全球结构地震损害预测 使用深度学习技术来检测地震后带有铰链/接头的结构中的损坏。 用于训练数据的网络包括:“一维卷积神经网络”,“ LSTM网络”,“使用频谱图的二维卷积神经网络”。 使用连接到铰链/接头的加速度计记录X和Y轴的数据,并使用SAP2000生成地震情况。 可以在以下位置找到用于训练的数据:(请参考数据集的.zip文件。文件夹中的笔记本未更新) 检查数据后,文件“ Data and Discrepancies.txt”描述了数据中每种情况下发现的差异。 请参阅文件“地震损坏检测2数据预处理.ipynb”以处理数据。 请参阅文件“地震破坏预测2-准备I&O.ipynb”,以准备要馈入网络的数据并生成两个X&Y轴的频谱图。 有关训练1D CNN和LSTM的信息,请参阅文件“ Earthquake Network Training 3.ipynb”。 随附的笔记本可能还包
1
Handbook of Mobile Ad Hoc Networks for Mobility Models国外经典介绍移动模型的书籍
2021-06-09 15:06:54 38.26MB Ad Hoc Mobility Models
1
“Practical Convolutional Neural Networks: Implement advanced deep learning models using Python” Md. Rezaul Karim,Mohit Sewak,Pradeep Pujari 2018年2月 epub文件,内含示例源码
2021-06-09 13:26:19 22.04MB CNN Covnet Neural Networks
1
IC 設計Low Power 經典. Springer 出版, 內容概述如何設計低功耗SOC
2021-06-08 10:21:24 12.26MB IC設計
1
通过混合转换和依赖于峰值时序的反向传播来启用深度峰值神经网络 这是与在发表的论文“使用混合转换和峰值定时依赖的反向传播实现深度尖峰神经网络”相关的代码。 培训方法 培训分以下两个步骤进行: 训练ANN('ann.py') 将ANN转换为SNN并执行基于尖峰的反向传播('snn.py') 档案文件 'ann.py':训练一个ANN,可以提供输入参数来提供建筑设计,数据集,训练设置 'snn.py':从头开始训练SNN或执行ANN-SNN转换(如果有预训练的ANN可用)。 / self_models:包含ANN和SNN的模型文件 'ann_script.py'和'snn_script.py':这些脚本可用于设计各种实验,它创建可用于运行多个模型的'script.sh' 训练有素的人工神经网络模型 训练有素的SNN模型 问题 有时,“ STDB”的激活在训练过程中会变得不稳定,从而
1
Matlab代码sqrt 神经网络学习 在这个项目中,我们将为神经网络实现反向传播算法,并将其应用于手写数字识别的任务。 该项目是吴安德(Andrew Ng)的练习。 要开始该项目,您需要下载启动程序代码并将其内容解压缩到目录中。 ex4data1.mat有5000个培训示例。 该项目的起点是ex4.m Octave脚本。 神经网络 在前面的文章中,我们为神经网络实现了前馈传播,并使用它提供的权重来预测手写数字。 在这个项目中,我们将实现反向传播算法来学习神经网络的参数。 可视化数据 首先,通过调用函数displayData可视化训练数据并将其显示在二维图上: 图1:训练数据示例 每个训练示例都是20像素乘20像素的数字灰度图像。 每个像素由一个浮点数表示,该数字指示该位置的灰度强度。 将20 x 20像素像素网格“展开”为400维向量。 这些训练示例中的每一个都成为数据矩阵X一行。 这为我们提供了一个5000 x 400的矩阵X ,其中每一行都是一个手写数字图像的训练示例。 训练集的第二部分是5000维向量y ,其中包含训练集的标签。 为了使事情与没有零索引的Octave / Mat
2021-06-06 16:12:30 7.25MB 系统开源
1
Network+ Guide to Networks(7th) 英文无水印pdf 第7版 pdf所有页面使用FoxitReader和PDF-XChangeViewer测试都可以打开 本资源转载自网络,如有侵权,请联系上传者或csdn删除 本资源转载自网络,如有侵权,请联系上传者或csdn删除
2021-06-05 19:34:34 47.54MB Network+ Guide Networks
1
Haykin经典教材Neural Networks - A Comprehensive Foundation及Matlab代码
2021-06-05 00:43:15 37.39MB Haykin 经典教材 Comprehensive  Foundation
1
mining heterogeneous information networks for principles and methodologies hanjiawei 编写的关于异构信息网络的方面的理论书籍
2021-06-04 00:54:50 2.61MB hetero
1