文档支持目录章节跳转同时还支持阅读器左侧大纲显示和章节快速定位,文档内容完整、条理清晰。文档内所有文字、图表、函数、目录等元素均显示正常,无任何异常情况,敬请您放心查阅与使用。文档仅供学习参考,请勿用作商业用途。 想轻松敲开编程大门吗?Python 就是你的不二之选!它作为当今最热门的编程语言,以简洁优雅的语法和强大的功能,深受全球开发者喜爱。该文档为你开启一段精彩的 Python 学习之旅。从基础语法的细致讲解,到实用项目的实战演练,逐步提升你的编程能力。无论是数据科学领域的数据分析与可视化,还是 Web 开发中的网站搭建,Python 都能游刃有余。无论你是编程小白,还是想进阶的老手,这篇博文都能让你收获满满,快一起踏上 Python 编程的奇妙之旅!
2025-09-08 14:29:20 4.9MB python
1
内容概要:本文档提供了机器人开发全流程的实战教程包,涵盖从理论入门到工程部署的所有环节。它针对智能小车、机械臂、语音交互机器人等具体应用场景,详细介绍了机器人开发中的感知、决策、控制三个核心模块,并支持Arduino、树莓派、Jetson Nano、ROS等主流开发平台。文档内含大量实例项目,如超声波避障智能小车、六自由度机械臂控制以及语音识别语音播报机器人助手,每个项目都配有完整的工程文件和详细的讲解文档。此外,还深入探讨了PID控制、Kalman滤波、路径规划等控制算法,以及ROS系统的使用,包括Gazebo仿真环境的搭建、MoveIt机械臂路径规划等。最后,提供了硬件接入指南、多机通信方案、Web控制界面开发等内容。 适合人群:机器人入门学习者(包括高职、本科、研究生)、工业机器人研发工程师、人工智能及控制系统研究人员、高校实验室或企业项目组的原型设计成员、教育机器人课程教师或培训讲师。 使用场景及目标:①帮助初学者快速掌握机器人开发的基础知识和技术;②为有一定经验的研发人员提供深入的技术细节和实战技巧;③辅助教师和培训讲师进行教学活动,提供丰富的教学材料;④支持研究团队开展相关领域的科研工作,促进技术创新。 其他说明:此教程包不仅包含丰富的理论知识和实践案例,还提供了详细的硬件说明、AI模块集成指南、部署与测试方法,确保使用者能够顺利完成从概念到成品的整个开发过程。同时,对于希望进一步扩展项目的用户,文档也给出了多机通信、Web控制界面、远程OTA升级等高级功能的实现思路。
2025-09-08 14:01:44 4KB 机器人开发 Arduino Python 机器学习
1
zh_core_web_sm-3.4.0-py3-none-any.whl 自然语言处理中文工具包
2025-09-08 13:53:34 46.16MB nlp python spacy
1
内容概要:本文档主要介绍了智慧社区省赛的相关培训资料,涵盖ROS技术的程序题、操作题和综合题,以及涉及视觉技术的任务如图像分类、交通信号灯状态识别、窗户检测、火灾隐患检测等。每部分任务都有详细的实现步骤、评分标准和参考答案。还包括基础知识考试的内容和省赛文件提交的要求。 适合人群:对ROS技术和计算机视觉有一定了解的学生和工程师,尤其是参加智慧社区相关竞赛的团队成员。 使用场景及目标:适用于准备智慧社区省赛的技术培训和个人自学,帮助参赛团队提升技术水平,提高比赛得分。 其他说明:文档提供了大量的实践案例和代码示例,有助于理解和掌握ROS和视觉技术的实际应用。同时,对基础知识的复习也有助于巩固理论基础。
2025-09-08 01:10:12 5.42MB Python 图像识别 深度学习
1
基于AirSim框架的无人艇控制程序的Python实现。首先概述了无人艇技术的研究背景和发展趋势,接着阐述了在编写无人艇控制程序前所需的准备工作,包括安装AirSim相关依赖、配置Python环境以及硬件接口。然后逐步展示了完整的Python代码实现,涵盖从导入必要库到初始化AirSim客户端、设置无人艇初始状态和目标位置、编写控制逻辑直至主程序入口的全过程。最后强调了测试与调试环节的重要性,并对未来发展方向进行了简要展望。 适合人群:对无人艇技术和AirSim框架感兴趣的开发者和技术爱好者,尤其是有一定Python编程基础的人群。 使用场景及目标:适用于希望利用AirSim框架快速搭建无人艇控制系统的学习者和研究人员。主要目标是掌握无人艇的基础控制方法,如路径规划、避障等基本操作技能。 阅读建议:建议读者先熟悉AirSim框架及其API,再跟随文中步骤动手实践,在实践中加深对无人艇控制原理的理解。
2025-09-07 15:00:13 1.91MB
1
Buildozer Buildozer是用于轻松创建应用程序包的工具。 目标是在您的应用程序目录中有一个“ buildozer.spec”文件,描述您的应用程序要求和设置,例如标题,图标,包含的模块等。Buildozer将使用该规范为Android,iOS,Windows,OSX创建一个程序包和/或Linux。 Buildozer当前支持通过项目进行Android打包,并通过kivy-ios项目支持iOS打包。 iOS和OSX仍在工作。 对于Android,buildozer将自动下载并准备构建依赖项。 有关更多信息,请参见 。 请注意,仅支持Python 3。 请注意,此工具与同名的在线构建服务。 使用目标Python 3安装Buildozer(默认): 安装buildozer: # via pip (latest stable, recommended) # if you use a virtualenv, don't use the `--user` option pip install --user buildozer # latest dev version #
2025-09-07 04:27:57 145KB android python ios packaging
1
Altium原理图阅读器 这是一个Python命令行脚本,可以解析Altium原理图(* .SchDoc)文件,将它们转换为SVG图像或在窗口中显示。 它不完整,可能还有许多原理图元素和设置尚不了解。 原理图文件格式已在有所。 您可以根据Sam Hocevar发行的Do Do The Fuck You Want To Public License(WTFPL)version 2的条款重新分发和修改该程序。 有关详细信息,请参见文件。 依存关系 Python 3,来自 olefile包 TK(仅需要在窗口中显示原理图) 来自枕头(仅用于显示包含位图图像的示意图) 用法 转换为SVG:
2025-09-06 21:05:06 38KB python svg documentation viewer
1
B 题 碳化硅外延层厚度的确定
2025-09-06 18:00:49 20.57MB python
1
爬虫(Web Crawler)是一种自动化程序,用于从互联网上收集信息。其主要功能是访问网页、提取数据并存储,以便后续分析或展示。爬虫通常由搜索引擎、数据挖掘工具、监测系统等应用于网络数据抓取的场景。 爬虫的工作流程包括以下几个关键步骤: URL收集: 爬虫从一个或多个初始URL开始,递归或迭代地发现新的URL,构建一个URL队列。这些URL可以通过链接分析、站点地图、搜索引擎等方式获取。 请求网页: 爬虫使用HTTP或其他协议向目标URL发起请求,获取网页的HTML内容。这通常通过HTTP请求库实现,如Python中的Requests库。 解析内容: 爬虫对获取的HTML进行解析,提取有用的信息。常用的解析工具有正则表达式、XPath、Beautiful Soup等。这些工具帮助爬虫定位和提取目标数据,如文本、图片、链接等。 数据存储: 爬虫将提取的数据存储到数据库、文件或其他存储介质中,以备后续分析或展示。常用的存储形式包括关系型数据库、NoSQL数据库、JSON文件等。 遵守规则: 为避免对网站造成过大负担或触发反爬虫机制,爬虫需要遵守网站的robots.txt协议,限制访问频率和深度,并模拟人类访问行为,如设置User-Agent。 反爬虫应对: 由于爬虫的存在,一些网站采取了反爬虫措施,如验证码、IP封锁等。爬虫工程师需要设计相应的策略来应对这些挑战。 爬虫在各个领域都有广泛的应用,包括搜索引擎索引、数据挖掘、价格监测、新闻聚合等。然而,使用爬虫需要遵守法律和伦理规范,尊重网站的使用政策,并确保对被访问网站的服务器负责。
2025-09-05 17:12:04 11KB python 爬虫 数据收集
1
# 基于Python和PyTorch的Mean Teacher模型 ## 项目简介 本项目实现了基于Mean Teacher模型的半监督学习方法,用于训练CIFAR10数据集。Mean Teacher模型通过引入一个Mean Teacher模型来增强模型的鲁棒性,使用有标签和无标签的数据联合训练模型,提高模型的性能。 ## 项目的主要特性和功能 1. Mean Teacher模型: 使用有标签和无标签的数据联合训练模型,通过计算模型输出和Mean Teacher模型的输出的差异(一致性损失)来增强模型的鲁棒性。 2. 一致性损失: 在训练过程中,除了常规的交叉熵损失外,还计算了模型输出和Mean Teacher模型输出的均方误差(MSE)作为一致性损失。 3. 参数更新: 在每个训练批次后,更新模型的权重,并更新Mean Teacher模型的参数(通过加权平均)。
2025-09-05 16:08:18 1.33MB
1