State Estimation for Robotics_高翔翻译_2018.01.15.pdf
2022-09-01 14:04:36 4.86MB
1
基于MATLAB和Simulink Robotics Arena的行走机器人示例
2022-08-15 09:08:34 149.81MB 机器人 人工智能 强化学习 神经网络
1
FROST:快速机器人优化和仿真工具包 用于MATLAB的FROST(快速机器人优化和仿真工具包)使用基于虚拟约束的反馈控制器为双足步行机器人提供了通用的全身动力学步态优化和仿真框架。 Wolfram Mathematica后端支持生成符号化的多域系统动力学和运动学解析表达式,这些解析表达式作为C / C ++源导出,可以在MATLAB下编译为* .MEX文件,以提高计算速度。 FROST还具有针对全阶动态步态优化问题的最先进的直接配置方法,以确保快速而可靠的收敛。 一些主要功能包括: 使用Mathematica内核作为后端,使用'MathLink'从Matlab向Mathematica内核发送数据/命令。 动态双足步行被建模为包含连续阶段(域)和离散过渡(重置图)的混合系统。 混合系统的域结构通过有向图(有向图)描述。 有向图可以是循环的也可以是非循环的。 默认控制律使用基于
2022-08-09 17:06:04 26.45MB robotics optimization dynamic hybrid
1
C ++上的卡尔曼滤波器(本征) 这是使用库在C ++中实现的基本卡尔曼滤波器实现。 它可以直接实现算法,如或在此演示。 该代码的整体结构是从借用,并将其扩展为允许输入控制。 有一个测试程序可以根据嘈杂的观测值估计弹丸的运动。 要运行它,请使用CMake: cd kalmanfilter-cpp mkdir build cd build cmake .. make -j4 ./kalman-test 注意:您可能必须在CMakeLists.txt指定Eigen库的路径。
2022-08-03 11:02:48 5KB robotics estimation kalman-filter C++
1
机器人 这将在带有Adafruit Motor Hat的树莓派PI上运行一个带有网络服务器的简单机器人。 我为自己写了这篇文章是为了好玩,并帮助我记住如何进行设置。 可以在本文中找到高级概述: : 硬件 树莓派3 16GB(或更大)SIM卡 Adafruit汽车帽(用于车轮) 任何带有直流电动机的机箱-例如: : chassis Adafruit伺服帽子(用于武器) HC-SR04声纳 任何步进电机手臂-例如:SainSmart DIY控制码垛手臂的机器人手臂( ) 与Raspberry PI兼容的相机-例如: : 首先,您应该能够使机器人在没有手臂,声纳和伺服帽的情况
2022-07-26 18:09:34 26KB raspberry-pi robot camera robotics
1
第一版机器人入门教材,有matlab仿真,比较直观的学习。
2022-07-19 13:35:22 154.8MB 机器人控制 机器人视觉
1
Design, build and simulate complex robots using Robot Operating System and master its out-of-the-box functionalities About This Book Develop complex robotic applications using ROS for interfacing robot manipulators and mobile robots with the help of high end robotic sensors Gain insights into autonomous navigation in mobile robot and motion planning in robot manipulators Discover the best practices and troubleshooting solutions everyone needs when working on ROS Who This Book Is For If you are a robotics enthusiast or researcher who wants to learn more about building robot applications using ROS, this book is for you. In order to learn from this book, you should have a basic knowledge of ROS, GNU/Linux, and C++ programming concepts. The book will also be good for programmers who want to explore the advanced features of ROS. Table of Contents Chapter 1: Introduction to ROS and Its Package Management Chapter 2: Working with 3D Robot Modeling in ROS Chapter 3: Simulating Robots Using ROS and Gazebo Chapter 4: Using the ROS MoveIt! and Navigation Stack Chapter 5: Working with Pluginlib, Nodelets, and Gazebo Plugins Chapter 6: Writing ROS Controllers and Visualization Plugins Chapter 7: Interfacing I/O Boards, Sensors, and Actuators to ROS Chapter 8: Programming Vision Sensors using ROS, Open-CV, and PCL Chapter 9: Building and Interfacing Differential Drive Mobile Robot Hardware in ROS Chapter 10: Exploring the Advanced Capabilities of ROS-MoveIt! Chapter 11: ROS for Industrial Robots Chapter 12: Troubleshooting and Best Practices in ROS
2022-07-15 08:00:55 13.04MB ROS Robotics Programming
1
matlab中robotics toolbox的函数解说
2022-07-05 09:04:09 239KB 文档资料
英文版高清带书签 Contents Preface xvii Acknowledgments xix I Basics 1 1 Introduction 3 1.1 Uncertainty in Robotics 3 1.2 Probabilistic Robotics 4 1.3 Implications 9 1.4 Road Map 10 1.5 Teaching Probabilistic Robotics 11 1.6 Bibliographical Remarks 11 2 Recursive State Estimation 13 2.1 Introduction 13 2.2 Basic Concepts in Probability 14 2.3 Robot Environment Interaction 19 2.3.1 State 20 2.3.2 Environment Interaction 22 2.3.3 Probabilistic Generative Laws 24 2.3.4 Belief Distributions 25 2.4 Bayes Filters 26 2.4.1 The Bayes Filter Algorithm 26 2.4.2 Example 28 2.4.3 Mathematical Derivation of the Bayes Filter 31 2.4.4 The Markov Assumption 33 2.5 Representation and Computation 34 2.6 Summary 35 2.7 Bibliographical Remarks 36 2.8 Exercises 36 3 Gaussian Filters 39 3.1 Introduction 39 3.2 The Kalman Filter 40 3.2.1 Linear Gaussian Systems 40 3.2.2 The Kalman Filter Algorithm 43 3.2.3 Illustration 44 3.2.4 Mathematical Derivation of the KF 45 3.3 The Extended Kalman Filter 54 3.3.1 Why Linearize? 54 3.3.2 Linearization Via Taylor Expansion 56 3.3.3 The EKF Algorithm 59 3.3.4 Mathematical Derivation of the EKF 59 3.3.5 Practical Considerations 61 3.4 The Unscented Kalman Filter 65 3.4.1 Linearization Via the Unscented Transform 65 3.4.2 The UKF Algorithm 67 3.5 The Information Filter 71 3.5.1 Canonical Parameterization 71 3.5.2 The Information Filter Algorithm 73 3.5.3 Mathematical Derivation of the Information Filter 74 3.5.4 The Extended Information Filter Algorithm 75 3.5.5 Mathematical Derivation of the Extended Information Filter 76 3.5.6 Practical Considerations 77 3.6 Summary 79 3.7 Bibliographical Remarks 81 3.8 Exercises 81 4 Nonparametric Filters 85 4.1 The Histogram Filter 86 4.1.1 The Discrete Bayes Filter Algorithm 86 4.1.2 Continuous State 87 4.1.3 Mathematical Derivation of the Histogram Approximation 89 4.1.4 Decomposition Techniques 92 4.2 Binary Bayes Filters with Static State 94 4.3 The Particle Filter 96 4.3.1 Basic Algorithm 96 4.3.2 Importance Sampling 100 4.3.3 Mathematical Derivation of the PF 103 4.3.4 Practical Considerations and Properties of Particle Filters 104 4.4 Summary 113 4.5 Bibliographical Remarks 114 4.6 Exercises 115 5 Robot Motion 117 5.1 Introduction 117 5.2 Preliminaries 118 5.2.1 Kinematic Configuration 118 5.2.2 Probabilistic Kinematics 119 5.3 Velocity Motion Model 121 5.3.1 Closed Form Calculation 121 5.3.2 Sampling Algorithm 122 5.3.3 Mathematical Derivation of the Velocity Motion Model 125 5.4 Odometry Motion Model 132 5.4.1 Closed Form Calculation 133 5.4.2 Sampling Algorithm 137 5.4.3 Mathematical Derivation of the Odometry Motion Model 137 5.5 Motion and Maps 140 5.6 Summary 143 5.7 Bibliographical Remarks 145 5.8 Exercises 145 6 Robot Perception 149 6.1 Introduction 149 6.2 Maps 152 6.3 Beam Models of Range Finders 153 6.3.1 The Basic Measurement Algorithm 153 6.3.2 Adjusting the Intrinsic Model Parameters 158 6.3.3 Mathematical Derivation of the Beam Model 162 6.3.4 Practical Considerations 167 6.3.5 Limitations of the Beam Model 168 6.4 Likelihood Fields for Range Finders 169 6.4.1 Basic Algorithm 169 6.4.2 Extensions 172 6.5 Correlation-Based Measurement Models 174 6.6 Feature-Based Measurement Models 176 6.6.1 Feature Extraction 176 6.6.2 Landmark Measurements 177 6.6.3 Sensor Model with Known Correspondence 178 6.6.4 Sampling Poses 179 6.6.5 Further Considerations 180 6.7 Practical Considerations 182 6.8 Summary 183 6.9 Bibliographical Remarks 184 6.10 Exercises 185 II Localization 189 7 Mobile Robot Localization: Markov and Gaussian 191 7.1 A Taxonomy of Localization Problems 193 7.2 Markov Localization 197 7.3 Illustration of Markov Localization 200 7.4 EKF Localization 201 7.4.1 Illustration 201 7.4.2 The EKF Localization Algorithm 203 7.4.3 Mathematical Derivation of EKF Localization 205 7.4.4 Physical Implementation 210 7.5 Estimating Correspondences 215 7.5.1 EKF Localization with Unknown Correspondences 215 7.5.2 Mathematical Derivation of the ML Data Association 216 7.6 Multi-Hypothesis Tracking 218 7.7 UKF Localization 220 7.7.1 Mathematical Derivation of UKF Localization 220 7.7.2 Illustration 223 7.8 Practical Considerations 229 7.9 Summary 232 7.10 Bibliographical Remarks 233 7.11 Exercises 234 8 Mobile Robot Localization: Grid And Monte Carlo 237 8.1 Introduction 237 8.2 Grid Localization 238 8.2.1 Basic Algorithm 238 8.2.2 Grid Resolutions 239 8.2.3 Computational Considerations 243 8.2.4 Illustration 245 8.3 Monte Carlo Localization 250 8.3.1 Illustration 250 8.3.2 The MCL Algorithm 252 8.3.3 Physical Implementations 253 8.3.4 Properties of MCL 253 8.3.5 Random Particle MCL: Recovery from Failures 256 8.3.6 Modifying the Proposal Distribution 261 8.3.7 KLD-Sampling: Adapting the Size of Sample Sets 263 8.4 Localization in Dynamic Environments 267 8.5 Practical Considerations 273 8.6 Summary 274 8.7 Bibliographical Remarks 275 8.8 Exercises 276 III Mapping 279 9 Occupancy Grid Mapping 281 9.1 Introduction 281 9.2 The Occupancy Grid Mapping Algorithm 284 9.2.1 Multi-Sensor Fusion 293 9.3 Learning Inverse Measurement Models 294 9.3.1 Inverting the Measurement Model 294 9.3.2 Sampling from the Forward Model 295 9.3.3 The Error Function 296 9.3.4 Examples and Further Considerations 298 9.4 Maximum A Posteriori Occupancy Mapping 299 9.4.1 The Case for Maintaining Dependencies 299 9.4.2 Occupancy Grid Mapping with Forward Models 301 9.5 Summary 304 9.6 Bibliographical Remarks 305 9.7 Exercises 307 10 Simultaneous Localization and Mapping 309 10.1 Introduction 309 10.2 SLAM with Extended Kalman Filters 312 10.2.1 Setup and Assumptions 312 10.2.2 SLAM with Known Correspondence 313 10.2.3 Mathematical Derivation of EKF SLAM 317 10.3 EKF SLAM with Unknown Correspondences 323 10.3.1 The General EKF SLAM Algorithm 323 10.3.2 Examples 324 10.3.3 Feature Selection and Map Management 328 10.4 Summary 330 10.5 Bibliographical Remarks 332 10.6 Exercises 334 11 The GraphSLAM Algorithm 337 11.1 Introduction 337 11.2 Intuitive Description 340 11.2.1 Building Up the Graph 340 11.2.2 Inference 343 11.3 The GraphSLAM Algorithm 346 11.4 Mathematical Derivation of GraphSLAM 353 11.4.1 The Full SLAM Posterior 353 11.4.2 The Negative Log Posterior 354 11.4.3 Taylor Expansion 355 11.4.4 Constructing the Information Form 357 11.4.5 Reducing the Information Form 360 11.4.6 Recovering the Path and the Map 361 11.5 Data Association in GraphSLAM 362 11.5.1 The GraphSLAM Algorithm with Unknown Correspondence 363 11.5.2 Mathematical Derivation of the Correspondence Test 366 11.6 Efficiency Consideration 368 11.7 Empirical Implementation 370 11.8 Alternative Optimization Techniques 376 11.9 Summary 379 11.10 Bibliographical Remarks 381 11.11 Exercises 382 12 The Sparse Extended Information Filter 385 12.1 Introduction 385 12.2 Intuitive Description 388 12.3 The SEIF SLAM Algorithm 391 12.4 Mathematical Derivation of the SEIF 395 12.4.1 Motion Update 395 12.4.2 Measurement Updates 398 12.5 Sparsification 398 12.5.1 General Idea 398 12.5.2 Sparsification in SEIFs 400 12.5.3 Mathematical Derivation of the Sparsification 401 12.6 Amortized Approximate Map Recovery 402 12.7 How Sparse Should SEIFs Be? 405 12.8 Incremental Data Association 409 12.8.1 Computing Incremental Data Association Probabilities 409 12.8.2 Practical Considerations 411 12.9 Branch-and-Bound Data Association 415 12.9.1 Recursive Search 416 12.9.2 Computing Arbitrary Data Association Probabilities 416 12.9.3 Equivalence Constraints 419 12.10 Practical Considerations 420 12.11 Multi-Robot SLAM 424 12.11.1 Integrating Maps 424 12.11.2 Mathematical Derivation of Map Integration 427 12.11.3 Establishing Correspondence 429 12.11.4 Example 429 12.12 Summary 432 12.13 Bibliographical Remarks 434 12.14 Exercises 435 13 The FastSLAM Algorithm 437 13.1 The Basic Algorithm 439 13.2 Factoring the SLAM Posterior 439 13.2.1 Mathematical Derivation of the Factored SLAM Posterior 442 13.3 FastSLAM with Known Data Association 444 13.4 Improving the Proposal Distribution 451 13.4.1 Extending the Path Posterior by Sampling a New Pose 451 13.4.2 Updating the Observed Feature Estimate 454 13.4.3 Calculating Importance Factors 455 13.5 Unknown Data Association 457 13.6 Map Management 459 13.7 The FastSLAM Algorithms 460 13.8 Efficient Implementation 460 13.9 FastSLAM for Feature-Based Maps 468 13.9.1 Empirical Insights 468 13.9.2 Loop Closure 471 13.10 Grid-based FastSLAM 474 13.10.1 The Algorithm 474 13.10.2 Empirical Insights 475 13.11 Summary 479 13.12 Bibliographical Remarks 481 13.13 Exercises 482 IV Planning and Control 485 14 Markov Decision Processes 487 14.1 Motivation 487 14.2 Uncertainty in Action Selection 490 14.3 Value Iteration 495 14.3.1 Goals and Payoff 495 14.3.2 Finding Optimal Control Policies for the Fully Observable Case 499 14.3.3 Computing the Value Function 501 14.4 Application to Robot Control 503 14.5 Summary 507 14.6 Bibliographical Remarks 509 14.7 Exercises 510 15 Partially Observable Markov Decision Processes 513 15.1 Motivation 513 15.2 An Illustrative Example 515 15.2.1 Setup 515 15.2.2 Control Choice 516 15.2.3 Sensing 519 15.2.4 Prediction 523 15.2.5 Deep Horizons and Pruning 526 15.3 The Finite World POMDP Algorithm 527 15.4 Mathematical Derivation of POMDPs 531 15.4.1 Value Iteration in Belief Space 531 15.4.2 Value Function Representation 532 15.4.3 Calculating the Value Function 533 15.5 Practical Considerations 536 15.6 Summary 541 15.7 Bibliographical Remarks 542 15.8 Exercises 544 16 Approximate POMDP Techniques 547 16.1 Motivation 547 16.2 QMDPs 549 16.3 Augmented Markov Decision Processes 550 16.3.1 The Augmented State Space 550 16.3.2 The AMDP Algorithm 551 16.3.3 Mathematical Derivation of AMDPs 553 16.3.4 Application to Mobile Robot Navigation 556 16.4 Monte Carlo POMDPs 559 16.4.1 Using Particle Sets 559 16.4.2 The MC-POMDP Algorithm 559 16.4.3 Mathematical Derivation of MC-POMDPs 562 16.4.4 Practical Considerations 563 16.5 Summary 565 16.6 Bibliographical Remarks 566 16.7 Exercises 566 17 Exploration 569 17.1 Introduction 569 17.2 Basic Exploration Algorithms 571 17.2.1 Information Gain 571 17.2.2 Greedy Techniques 572 17.2.3 Monte Carlo Exploration 573 17.2.4 Multi-Step Techniques 575 17.3 Active Localization 575 17.4 Exploration for Learning Occupancy Grid Maps 580 17.4.1 Computing Information Gain 580 17.4.2 Propagating Gain 585 17.4.3 Extension to Multi-Robot Systems 587 17.5 Exploration for SLAM 593 17.5.1 Entropy Decomposition in SLAM 593 17.5.2 Exploration in FastSLAM 594 17.5.3 Empirical Characterization 598 17.6 Summary 600 17.7 Bibliographical Remarks 602 17.8 Exercises 604 Bibliography 607 Index 639
2022-07-02 11:56:42 8.87MB 机器人学 定位 地图构建 路径规划
1
From AI to Robotics: Mobile, Social, and Sentient Robots By 作者: Arkapravo Bhaumik ISBN-10 书号: 1482251477 ISBN-13 书号: 9781482251470 Edition 版本: 1 出版日期: 2018-03-01 pages 页数: 430 From AI to Robotics: Mobile, Social, and Sentient Robots is a journey into the world of agent-based robotics and it covers a number of interesting topics, both in the theory and practice of the discipline. The book traces the earliest ideas for autonomous machines to the mythical lore of ancient Greece and ends the last chapter with a debate on a prophecy set in the apparent future, where human beings and robots/technology may merge to create superior beings – the era of transhumanism. Throughout the text, the work of leading researchers is presented in depth, which helps to paint the socio-economic picture of how robots are transforming our world and will continue to do so. This work is presented along with the influences and ideas from futurists, such as Asimov, Moravec, Lem, Vinge, and of course Kurzweil. The book furthers the discussion with concepts of Artificial Intelligence and how it manifests in robotic agents. Discussions across various topics are presented in the book, including control paradigm, navigation, software, multi-robot systems, swarm robotics, robots in social roles, and artificial consciousness in robots. These discussions help to provide an overall picture of current day agent- based robotics and its prospects for the future. Examples of software and implementation in hardware are covered in Chapter 5 to encourage the imagination and creativity of budding robot enthusiasts. The book addresses several broad themes, such as AI in theory versus applied AI for robots, concepts of anthropomorphism, embodiment and situatedness, extending theory of psychology and animal behavior to robots, and the proposal that in the future, AI may be the new definition of science. Behavior-based robotics is covered in Chapter 2 and retells the debate between deliberative and reactive approaches. The text reiterates that the effort of modern day robotics is to replicate human-like intelligence and behavior, and the tools that a roboticist has at his or her disposal are open source software, which is often powered by crowd-sourcing. Open source meta-projects, such as Robot Operating System (ROS), etc. are briefly discussed in Chapter 5. The ideas and themes presented in the book are supplemented with cartoons, images, schematics and a number of special sections to make the material engaging for the reader. Designed for robot enthusiasts – researchers, students, or the hobbyist, this comprehensive book will entertain and inspire anyone interested in the exciting world of robots.
2022-06-19 19:42:38 45.86MB AI
1