人左脑|CD8+细胞|胎盘中TH上游抑制ARHGAP12学习子网通过细胞溶质的转录正调节,崔学磊,王琳,本文通过GRNInfer构建了人类左脑中酪氨酸羟化酶(TH)上游抑制Rho GTPase激活蛋白12(ARHGAP12)的分子亚网包括上游细胞质FMR1相互作用蛋白2�
2024-02-23 14:53:34 298KB 首发论文
1
使用scikit-learn掌握机器学习-第二版 这是发行的的代码库。 它包含从头到尾完成本书所必需的所有支持项目文件。 关于这本书 本书探讨了各种机器学习模型,包括k最近邻,逻辑回归,朴素贝叶斯,k均值,决策树和人工神经网络。 它讨论了数据预处理,超参数优化和集成方法。 您将建立对文档进行分类,识别图像,检测广告等的系统。 您将学习使用scikit-learn的API从分类变量,文本和图像中提取功能; 评估模型性能; 并就如何改善模型的性能形成直觉。 说明和导航 所有代码都组织在文件夹中。 每个文件夹均以数字开头,后跟应用程序名称。 例如,Chapter02。 该代码将如下所示: Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy U
2024-02-17 17:49:07 2.77MB JupyterNotebook
1
Learning OpenStack Networking (Neutron)(2nd) 英文无水印原版pdf 第2版 pdf所有页面使用FoxitReader、PDF-XChangeViewer、SumatraPDF和Firefox测试都可以打开 本资源转载自网络,如有侵权,请联系上传者或csdn删除 查看此书详细信息请在美国亚马逊官网搜索此书
2024-02-02 17:58:11 24.45MB Learning OpenStack Networking
1
学习数据挖掘和机器学习的一本非常著名的书。是第二版。不太完美的地方是,本书是英文版。
2024-01-26 20:45:02 9.08MB 数据挖掘 data mining Morgan.Kaufmann
1
Mastering Machine Learning with Python in Six Steps - 1E (2017) Mastering Machine Learning with Python in Six Steps - 1E (2017)
2024-01-19 23:11:56 4.74MB Mastering Machine Learning Python
1
Java Deep Learning Essentials 英文无水印pdf pdf所有页面使用FoxitReader和PDF-XChangeViewer测试都可以打开 本资源转载自网络,如有侵权,请联系上传者或csdn删除 本资源转载自网络,如有侵权,请联系上传者或csdn删除
2024-01-17 14:23:55 8.34MB Java Deep Learning Essentials
1
Java Deep Learning Essentials 英文版 2016
2024-01-17 11:53:47 6.4MB deep learning 机器学习
1
RetinaFace C ++重新实现源参考资源RetinaFace带有python代码。 模型转换工具MXNet2Caffe您需要自己添加一些层,并且在caffe中没有upsam RetinaFace C ++重新实现源参考资源RetinaFace用python代码提供在Insightface中。 模型转换工具MXNet2Caffe您需要自己添加一些图层,并且在caffe中没有上采样,您可以用反卷积代替,并且可能会有一点精度损失。 来自mobilenet25的原始模型参考,我已经对其进行了重新培训。 演示$ mkdir build $ cd build / $ cmake ../ $使您需要修改CmakeList文件中的依赖路径。 测速硬件:1080Ti test1:mod
2024-01-17 00:21:28 6.66MB C/C++ Machine Learning
1
,机器学习应用程序的广泛部署激发了人们对利用存储在移动设备上的大量数据的兴趣。为了保护数据隐私,联邦学习被提出通过在参与设备上执行本地分布式训练并将本地模型聚合为全局模型来学习共享模型。然而,由于移动设备的网络连接有限,联邦学习在所有参与设备上并行执行模型更新和聚合是不切实际的。此外,跨所有设备的数据样本通常不是独立同分布的(IID),这对联邦学习的收敛性和速度提出了额外的挑战。 在本文中,我们提出了一个经验驱动的控制框架FAVOR,它可以智能地选择客户端设备参与每一轮联邦学习,以抵消非iid数据引入的偏差,并加快收敛速度。通过实证和数学分析,我们观察到设备上训练数据的分布与基于这些数据训练的模型权值之间存在隐式联系,这使我们能够根据该设备上上传的模型权值来描述该设备上的数据分布。然后,我们提出了一种基于深度q学习的机制,该机制学习在每个通信轮中选择一个设备子集,以最大限度地奖励,鼓励提高验证准确性,并惩罚使用更多通信轮。通过在PyTorch中进行的大量实验,我们表明,与联邦平均算法相比,联邦学习所需的通信轮数在MNIST数据集上最多可以减少49%。
2024-01-15 17:58:33 1.13MB pytorch pytorch
1
Learning Generative Adversarial Networks 英文无水印pdf pdf所有页面使用FoxitReader和PDF-XChangeViewer测试都可以打开 本资源转载自网络,如有侵权,请联系上传者或csdn删除 本资源转载自网络,如有侵权,请联系上传者或csdn删除
2024-01-11 11:30:39 10.85MB Learning Generative Adversarial Networks
1