Approximation Algorithms for K-Modes Clustering,何增友,,In this paper, we study clustering with respect to the k-modes objective function, a natural formulation of clustering for categorical data. One of the main contributions of this p
2022-12-28 15:33:15 223KB Clustering Categorical Data K-Means
1
算法原理:1.K-means算法以空间中k个点为中心进行聚类,对最靠近他们的对象归类。通过迭代的方法,逐次更新各聚类中心的值,直至得到最好的聚类结果。 2.DBSCAN算法将具有足够密度的区域划分为簇,并在具有噪声的空间数据库中发现任意形状的簇,它将簇定义为密度相连的点的最大集合。 算法功能:通过以上两种方法对图像实现聚类(无监督学习),并比较其区别。
2022-12-26 19:31:27 983KB 人工智能 聚类 kmeans算法 dbscan算法
1
欢迎。 该存储库包含基于Matlab的“ GBK-means聚类算法的实现:基于讨价还价博弈的K-means算法的改进”。 在该存储库中,提供了GBK-means聚类算法的源代码,并将其与两种众所周知的聚类算法K-means和Fuzzy cmeans进行比较。 关于通用有效性指标,已经对人工和现实世界的数据集进行了比较。 提出的方法是一种新的机制,用于解决集群中心相互竞争以吸引最多数量的相似对象或实体进入其集群的集群分析问题。
2022-12-11 16:43:24 16KB matlab
1
kmapper_law_analysis 使用拓扑数据分析和Mapper算法进行韩国法律数据分析 安装与执行 先决条件 Python(> = 3.6) NumPy Scikit学习 openpyxl 1.克隆 $ git clone https://github.com/zeebraa00/kmapper_law_analysis.git 2.安装软件包 $ pip install numpy $ pip install -U scikit-learn $ pip install openpyxl 3.制作数据的自定义距离矩阵 $ python make_metric.py 我们专注于法律的参照关系。 启动距离矩阵。 (将所有法则之间的距离设置为1。) 扫描朝鲜语先例时,可缩短同一先例中使用的法律之间的距离。 完成的距离矩阵将保存为二进制文件。 (law_data / cus
2022-12-09 11:05:33 5.65MB data-clustering tda kepler-mapper sckit-learn
1
Kmeans-python
2022-12-09 09:14:13 85KB Python
1
matlab聚类kmeans代码 作业7 要求 在MapReduce上实现K-Means算法并在小数据集上测试。可以使用附件的数据集,也可以随机生成若干散点的二维数据(x, y)。设置不同的K值和迭代次数,可视化聚类结果。 提交要求同作业5,附上可视化截图。 实现思路 我直接使用了实例代码来运行,用原来的代码创建maven项目KMeansExample。由于原来的代码不是用maven管理的,而且是基于Hadoop1.2编写的程序,所以有一些地方需要进行小小的修改。比如每个java文件前面都要加上对应的包名称,Job对象的创建需要调用getInstance静态方法,而不能直接new Job。 我尝试研读了整个算法的代码,下面简要描述一下示例代码的思路。 主程序:KMeansDriver.main() KMeansDriver.main()方法是整个算法的主程序,它从命令行接收指定的参数k(需要聚成的类数),iterationNum(迭代次数),inputpath,outputpath。依次调用三个主要的过程: generateInitialCluster():随机产生k个cluster
2022-12-07 18:05:50 1.23MB 系统开源
1
这是论文“Density Peak Clustering-based Noisy Label Detection for Hyperspectral Image Classification, IEEE Transactions on Geoscience and Remote Sensing, 2018, (Accepted)”的代码,更多细节可以在论文中找到。 如果你使用这个演示,请引用这篇论文。 要运行此演示,您应该先下载 libsvm-3.22。 libsvm-3.22 可在https://www.csie.ntu.edu.tw/~cjlin/libsvm/ 获得
2022-11-30 10:29:35 9KB matlab
1
official_classification.py : 使用了较多的sklearn中提供的聚类函数 self_classification.py : 使用了较多的手写聚类函数(手写高斯聚类由于计算高维矩阵n次方报错,就没有使用) 两者可以相互比较看手写函数效果如何。 model.py : 其中包含了kmeans,lvq,mixture-of-gaussian聚类函数,以及计算精度和NMI的手写函数,处理标签映射的匈牙利算法。 由于学习向量量化是依据ground truth的得到的一组原型向量,是有监督的学习,因此计算其精度没有意义,在函数里就没有计算精度和NMI,只打印出了原型向量 函数运行时会有warning,不用在意,手写的函数没有优化,速度较慢 代码对三个数据集,分别使用了kmeans,lvq,mixture-of-gaussian三个方法,在得到预测标签后,采用匈牙利算法对标签进行处理,计算其精确度acc和标准互信息nmi 这三种方法聚类的精度只有百分之五十几,在数据集yale中效果较差 运行方法: 安装相应需求的库,直接运行official_classifica
2022-11-30 03:22:26 6.04MB kmeans 支持向量量化 高斯聚类
1
将物理或抽象对象的集合分成由类似的对象组成的多个类的过程被称为聚类。由聚类所生成的簇是一组数据对象的集合,这些对象与同一个簇中的对象彼此相似,与其他簇中的对象相异。“物以类聚,人以群分”,在自然科学和社会科学中,存在着大量的分类问题。聚类分析又称群分析,它是研究(样品或指标)分类问题的一种统计分析方法。聚类分析起源于分类学,但是聚类不等于分类。聚类与分类的不同在于,聚类所要求划分的类是未知的。聚类分析内容非常丰富,有系统聚类法、有序样品聚类法、动态聚类法、模糊聚类法、图论聚类法、聚类预报法等。
2022-11-28 12:21:56 814KB clustering no teacher
1
Python实现K-Means聚类后的二维可视化,使用的是生成数据,编译器为jupyter notebook 简单便捷,易于理解 使用库:pandas ,numpy ,sklearn,matplotlib,seaborn
2022-11-23 12:25:32 155KB 可视化 kmeans算法
1