k-means 算法接受参数 k ;然后将事先输入的n个数据对象划分为 k个聚类以便使得所获得的聚类满足:同一聚类中的对象相似度较高;而不同聚类中的对象相似度较小。聚类相似度是利用各聚类中对象的均值所获得一个“中心对象”(引力中心)来进行计算的。
2022-03-19 20:16:50 36KB K-Means MatLab
1
kmeans:是用Go编写的k-means聚类算法实现
2022-03-14 15:29:02 3.66MB Go开发-数据结构和算法
1
k-means聚类算法及matlab代码调制分类 一种基于我的论文的新方法 用MATLAB Nowly编写,然后导入到Python 单载波调制算法分为两部分。 k-means聚类处理主要任务,而k-center greedy algorithm提高了k-means的性能。 这两个函数一起编译输入信号,该输入信号是复数的数组,并将它们映射到同相正交图上。 在此IQ图上,确定聚类中心,然后将结果传递到另一个代码,该代码确定输入信号的调制类型是什么。 考虑的调制类型是任何M-ary QAM和M-ary PSK调制,它们涵盖了当今大多数流行的调制。 k中心贪婪算法 此功能用于初始化k-means聚类。 通过之前进行该k-means聚类,表现k-means如图我的纸显著改进: 随机初始化它们时,该性能优于k-means和k-means++算法。 与执行此操作相比,执行此操作的成本也很小,因为它可以扫描theta(N)时间中的点,并且还可以提高此性能。 这是度量k-center optimization problem的贪婪近似算法,在k次迭代中达到2的近似因子。 贪婪算法的工作原理如下: 任意选
2022-03-14 10:27:40 25KB 系统开源
1
多维k-means聚类算法java简单实现,导入运行KmeansTest.java可看到结果 多维k-means聚类算法java简单实现,导入运行KmeansTest.java可看到结果
2021-12-26 13:55:21 10KB 多维 k-means 聚类
1
K-means聚类算法 简介 聚类是一个将数据集中在某些方面相似的数据成员进行分类组织的过程,聚类就是一种发现这种内在结构的技术,聚类技术经常被称为无监督学习。 K均值聚类是最著名的划分聚类算法,由于简洁和效率使得他成为所有聚类算法中最广泛使用的。给定一个数据点集合和需要的聚类数目k,k由用户指定,k均值算法根据某个距离函数反复把数据分入k个聚类中。 算法 先随机选取K个对象作为初始的聚类中心。然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。一旦全部对象都被分配了,每个聚类的聚类中心会根据聚类中现有的对象被重新计算
2021-12-22 20:07:13 84KB ab atl b函数
1
使用K均值的客户细分 使用K-Means聚类算法根据新近度,频率和货币价值(RFM)指标对客户进行细分
2021-12-22 12:59:42 1.5MB JupyterNotebook
1
k-means聚类算法及matlab代码目录 介绍 K-均值聚类是一种简单且可扩展的聚类方法,它以一种客观的方式将观察结果划分为k个聚类。 它具有非常广泛的应用,例如图像分割,零售产品分类(Kusrini,2015),温室气体排放等环境问题(Kijewska和Bluszcz,2015)。 K均值聚类可以与其他高级方法结合使用。 例如,它与支持向量机(SVM)一起使用来执行自动文本分类(Perrone和Connell,2000年)。 它也可以用作预处理方法,例如在隐马尔可夫模型(HMM)中初始化(Hu和Zanibbi,2011年)。 它的广泛应用和简单的计算复杂度使k-means聚类成为当今流行的方法之一。 当维数d> 1且簇数k> 1时,找到k均值成本函数的最小值是一个NP难题。 科学家想出了几种启发式方法来找到局部最小值,但是该过程仍然需要大量计算,尤其是对于具有高维特征的大型数据集而言。 因此,我们希望在机器集群上实现k-means启发式方法的并行版本,以在不牺牲算法准确性的情况下显着加快算法的运行速度。 k均值聚类的典型方法是期望最大化(EM)。 E步将点分配到最近的聚类中心,而
2021-12-18 20:06:11 54.51MB 系统开源
1
k-means聚类算法及matlab代码 Cube-Solver 解魔方机器人 运行效果 视频演示 1. 硬件机械平台 双臂双爪机械手,4个舵机,完成拧魔方的动作 USB 摄像头,完成魔方图像拍摄 2. 上位机程序 MATLAB 写的上位机,完成图像识别,魔方解算,通过串口发送机械运动步骤给单片机 文件说明 1. MATLAB 程序文件 cube_machine_Start.m 主程序,将MATLAB文件放在同一目录下,运行该文件启动程序。 cube_machine_Start.fig GUI界面文件。 colordetect.m 对魔方进行颜色识别,主要采用了K-means聚类算法,鲁棒性较好,室内自然光下颜色识别基本不会出错。 cube_machine_GUI.m 辅助控制机械手的子窗口界面,该文件采用纯代码编写,运行主程序自动启动,也可以单独启动。 kociemba.m 根据魔方颜色识别结果,进行解算,返回还原步骤。该文件通过网络端口调用德国数学家Kociemba的解魔方程序cube explorer 提供的API. (需要梯子访问)。 whitebalance.m 白平衡算法,
2021-12-16 21:07:38 29MB 系统开源
1
自组织神经网络和K-means聚类算法的比较分析,徐步云,倪禾,本文主要是研究自组织神经网络作为一种具有拓扑限制的,以特征提取为主要手段的聚类算法,并与传统的K-means算法进行比较分析,并��
2021-12-16 14:56:58 385KB 人工智能
1