使用STM32F103ZET6单片机,HAL库驱动ADXL345,串口进行数据显示 ADXL345 是 ADI 公司推出的基于 iMEMS 技术的 3 轴、数字输出加速度传感器。该加速度传感器的特点有: a. 分辨率高。最高 13 位分辨率。 b. 量程可变。具有+/-2g, +/-4g, +/-8g, +/-16g 可变的测量范围。 c. 灵敏度高。最高达 3.9mg/LSB,能测量不到 1.0°的倾斜角度变化。 d. 功耗低。 40~145uA 的超低功耗,待机模式只有 0.1uA。 e. 尺寸小。整个 IC 尺寸只有 3mm*5mm*1mm, LGA 封装。 ADXL 支持标准的 I2C 或 SPI 数字接口,自带 32 级 FIFO 存储,并且内部有多种运动状态检测和灵活的中断方式等特性。
2024-10-19 20:03:49 24.35MB stm32
1
资源分类:Python库 所属语言:Python 资源全名:PyMuPDF-1.18.14-cp37-cp37m-macosx_10_9_x86_64.whl 资源来源:官方 安装方法:https://lanzao.blog.csdn.net/article/details/101784059
2024-10-17 14:05:08 5.31MB python 开发语言 Python库
1
《BL0942电能计量芯片驱动代码详解与移植指南》 在现代电子设备设计中,电能计量芯片起着至关重要的作用,它们能够精确地测量电流、电压和功率等参数,为能源管理和节能提供了基础。BL0942是一款高效、精准的电能计量芯片,广泛应用于智能电网、智能家居以及工业自动化等领域。本文将详细介绍BL0942的驱动代码,解析其低层库(LL库)和移植方法,并提供CUUBEMX配置文件的使用指南。 驱动代码是连接硬件与软件的关键,它负责初始化和控制BL0942芯片,使其能够正常工作。BL0942的驱动代码通常包括初始化设置、数据读取、中断处理等功能。详细的注释使得开发者能更容易理解代码逻辑,快速上手。注释会解释每个函数的作用、参数含义以及操作步骤,这对于理解和调试代码非常有帮助。 LL库,即Low-Level Library,是驱动代码的核心部分,它封装了与硬件交互的底层细节。对于BL0942,LL库可能包含初始化寄存器、设置采样频率、配置中断等函数。这些函数直接操作芯片的寄存器,确保数据准确无误地读取和写入。通过使用LL库,开发者可以避免直接处理繁琐的硬件细节,提高开发效率。 CUUBEMX是STM32生态系统中的一个强大工具,用于自动配置项目中的外设和引脚。在BL0942驱动代码中,附带的CUUBEMX文件使得开发者能够轻松配置STM32微控制器与BL0942的连接,包括GPIO、SPI或I2C通信接口的设置。只需在CUUBEMX环境中导入这个配置文件,系统会自动生成相应的初始化代码,大大简化了移植过程。 移植驱动代码到新的平台时,主要考虑以下几点: 1. **硬件接口匹配**:确保目标平台的GPIO、SPI或I2C接口与BL0942兼容,并正确配置。 2. **时序兼容性**:检查BL0942所需的时序要求,如时钟速度、数据传输速率等,确保新平台能满足。 3. **中断处理**:如果驱动代码中包含中断服务程序,需要确认目标平台支持相应的中断源,并正确设置中断向量。 4. **电源管理**:根据目标平台的电源特性,调整BL0942的电源管理设置,如唤醒和睡眠模式。 5. **调试支持**:利用目标平台的调试工具,如JTAG或SWD,进行代码调试。 在实际应用中,开发者可能还需要根据具体需求对驱动代码进行优化,例如增加数据滤波、提高采样精度或实现远程通信功能。此外,为了提高系统稳定性,还需要对驱动代码进行充分的测试,确保在各种工况下都能稳定运行。 总结,BL0942驱动代码的详细注释、LL库和CUUBEMX配置文件为开发者提供了便利,使得BL0942的使用和移植变得更加容易。通过深入理解这些内容,我们可以快速地将BL0942集成到自己的项目中,实现精确的电能计量功能。
2024-10-17 11:29:49 11.52MB 电能计量芯片
1
蒸汽...顶上! 概括 这是一套PowerShell脚本,可以承担繁重的Steam库管理工作。 目前,它包括: VDFTools模块:将ConvertTo-VDF和ConvertFrom-VDF函数添加到powershell,以将Valve数据文件解析为可用的数据对象。 Publish-SteamAppManifests:扫描\ SteamApps \ Common中的安装文件夹,并创建缺少的App Manifest。 大大简化了库的迁移/恢复! Initialize-SteamAppLookup:构建一个包含查找表的JSON数据文件,该查找表允许关联Steam AppID,名称和安装目录-并不是很有用,但可以加快Publish-SteamAppManifests! Set-FamilySharingPrecedence:允许您设置库共享的优先顺序。 Steam客户端仅识别单个出借
2024-10-17 00:54:40 38KB PowerShell
1
目前很多国产例如瀚高HighGo Database数据库,很多都已经习惯使用Navicat数据库连接工具,但是Navicat并没有该连接,本资源将有效解决Navicat连接国产瀚高库的方法; 1、首先Navicat选择postgresql连接; 2、如果连接启用国密 sm3 的瀚高数据库,会报错authentication method 13 not supported; 3、下载下面连接的 zip 文件,解压后将 ddl 文件拷贝覆盖到 Navicat 主目录下,即可连接。
2024-10-15 09:51:27 2.58MB Navicat postgresql
1
OPPO仿iOS主题库是一个专为OPPO手机用户设计的主题资源集合,旨在为用户提供与苹果iOS相似的用户体验和视觉风格。这个主题库包含了各种界面元素、图标、壁纸、动画效果等,让OPPO手机用户可以在不改变操作系统底层的情况下,享受到类似iOS的操作界面。 在深入探讨这个主题库之前,我们先来了解一下OPPO手机。OPPO是一家中国智能手机制造商,以其创新的摄像头技术、快速充电解决方案以及优雅的设计而闻名。OPPO手机通常搭载自家的ColorOS系统,这是一个基于Android定制的用户界面,具有丰富的自定义选项和功能。 OPPO仿iOS主题库中的“OPPO仿iOS.theme”文件,是一个专门为ColorOS设计的主题文件。它可能包含以下内容: 1. **图标**:主题库中通常会替换原系统的应用图标,使它们看起来更接近iOS的样式。这些图标可能有圆角矩形的外形,颜色鲜明,设计简洁,与苹果系统的图标保持一致。 2. **壁纸**:主题库中可能包含了模仿iOS的静态或动态壁纸,这些壁纸通常具有高清晰度和简洁的美学设计,符合iOS的视觉风格。 3. **布局和界面**:OPPO仿iOS主题可能调整了原系统的布局,比如将底部导航栏改为iPhone的Dock栏样式,或者将应用抽屉改为iOS的一页式应用列表。 4. **过渡动画**:为了增加iOS的体验感,主题可能会包含与iOS相似的过渡和滑动效果,如滑动返回、页面切换动画等。 5. **字体和颜色**:主题可能会更改系统字体和颜色方案,使其更加接近iOS的默认设置,如San Francisco字体和iOS特有的配色。 6. **控制中心**:iOS的控制中心是其特色之一,主题可能也会模仿这一设计,使OPPO手机的下拉菜单看起来更像iOS的控制中心。 7. **通知中心**:主题可能也会对通知中心的样式进行调整,使其在视觉上更接近iOS的风格,包括通知卡片的设计和滑动操作。 8. **小部件**:虽然iOS和Android的小部件功能不同,但主题可能会尝试模仿iOS的Today Widget,提供一些简化的信息展示。 安装和应用这样的主题库需要用户有一定的操作步骤,通常可以在OPPO手机的设置中找到主题管理相关的选项,选择导入并应用这个主题文件。需要注意的是,不是所有OPPO手机型号都支持所有主题,而且某些自定义可能会影响系统的稳定性和性能。 OPPO仿iOS主题库是OPPO手机用户追求个性化和不同操作系统体验的一种方式,它允许用户在保持Android系统灵活性的同时,享受iOS的视觉和交互设计。然而,这种仿造并不意味着完全复制iOS的所有功能,而是根据Android系统的特点,尽可能地模拟iOS的外观和感觉。
2024-10-13 12:44:57 21.51MB
1
对传统的随机路图法(PRM)算法调用matlab库文件的仿真实验,只为给读者提供最原始简介的实验环境,避免因为过度的改进造成不必要的理解误区。该实验程序可自由定义栅格地图大小,自由定义障碍物的摆放位置与数量,同时也可以生成随机地图验证自己的算法。希望可以帮到更多人。
1
基于C#写的雷赛DMC1000马达控制类库。 封装成类,源码。可直接调用,有马达控制的基本功能 原点,极限状态,相对位移,绝对定位,状态检测,判断马达运行是否安全,判断马达定位是否到达目的位置。 基于C#写的雷赛DMC1000马达控制类库。 封装成类,源码。可直接调用,有马达控制的基本功能 原点,极限状态,相对位移,绝对定位,状态检测,判断马达运行是否安全,判断马达定位是否到达目的位置。 基于C#写的雷赛DMC1000马达控制类库。 封装成类,源码。可直接调用,有马达控制的基本功能 原点,极限状态,相对位移,绝对定位,状态检测,判断马达运行是否安全,判断马达定位是否到达目的位置。 基于C#写的雷赛DMC1000马达控制类库。 封装成类,源码。可直接调用,有马达控制的基本功能 原点,极限状态,相对位移,绝对定位,状态检测,判断马达运行是否安全,判断马达定位是否到达目的位置。 基于C#写的雷赛DMC1000马达控制类库。 封装成类,源码。可直接调用,有马达控制的基本功能 原点,极限状态,相对位移,绝对定位,状态检测,判断马达运行是否安全,判断马达定位是否到达目的位置。
2024-10-10 19:44:01 250KB
1
MIDI(Musical Instrument Digital Interface)文件是一种标准的音乐数据格式,用于在数字音乐设备之间交换音乐信息。在C++编程环境中,解析MIDI文件通常需要特定的库来处理这种特殊的二进制数据。本项目提供了一个C++库,专为解析MIDI文件而设计,帮助开发者将MIDI数据转化为可操作的结构。 让我们了解一下MIDI文件的基本结构。MIDI文件由一系列事件组成,包括音符开始、音符结束、控制改变、程序改变等。这些事件以时间戳标记,使得程序可以按照正确的时间顺序播放音乐。MIDI文件分为四个主要部分:文件头、轨道头、轨道数据和结束标记。文件头包含MIDI格式信息、时间分割和音轨数量;轨道头指示每个音轨的开始位置;轨道数据包含实际的MIDI事件;结束标记则表示文件的结尾。 这个C++库的核心功能可能包括以下组件: 1. **MIDI文件读取器**:实现读取MIDI文件的函数,能处理MIDI文件头和轨道信息,将文件内容转化为内存中的数据结构。 2. **事件解析器**:分析MIDI事件并将其转换为易于处理的对象。例如,将音符开始事件转化为包含音符号、速度和持续时间的对象。 3. **时间戳处理**:处理MIDI事件的时间戳,确保它们按照正确的顺序播放。 4. **音符和控制事件处理器**:对音符事件(如音符开始、结束)和控制事件(如控制器改变、程序改变)进行操作,以便在程序中应用。 5. **静态库构建**:`src`目录下的源代码用于构建静态库,静态库是预编译的代码集合,可以在多个目标程序中链接,无需再次编译。这通常涉及配置Makefile或CMakeLists.txt文件,指定源文件、编译选项和链接步骤。 6. **示例代码**:`main.cpp`提供了使用该库的示例,展示了如何加载MIDI文件、解析事件并进行操作。这通常包括打开文件、创建MIDI解析对象、遍历事件和处理事件的代码。 要使用这个库,开发人员需要遵循以下步骤: 1. **库的集成**:将库的静态库文件(通常是`.a`或`.lib`扩展名)添加到项目的链接器设置中。 2. **头文件的包含**:在需要使用库的源文件中,包含库提供的头文件,以便访问相关的类和函数。 3. **实例化解析器**:创建库中的解析器对象,通常需要传递MIDI文件路径。 4. **解析MIDI文件**:调用解析器的函数来处理文件,并获取MIDI事件。 5. **处理事件**:根据需要对事件进行处理,例如播放音符或改变音色。 这个C++库为开发者提供了一种方便的方式来解析MIDI文件,可以用于创建音乐软件、游戏音效系统或者其他需要处理MIDI数据的应用。通过理解和利用这个库,你可以更好地理解MIDI格式,并将其应用于各种创意项目。
2024-10-10 10:15:40 51KB midi c++
1
该实验源码是针对STM32F429微控制器设计的一个基础实验,主要涉及到STM32CUBE MX配置、HAL库的使用以及内部温度传感器的读取。在这个实验中,我们将深入理解以下知识点: 1. **STM32CUBEMX**:STM32CUBEMX是一款强大的图形化配置工具,它可以帮助开发者快速配置STM32微控制器的各种外设,如ADC(模拟数字转换器)、定时器、串口等。通过这个工具,我们可以设置时钟树、初始化GPIO、配置中断等,生成相应的初始化代码,极大地简化了项目启动阶段的工作。 2. **HAL库**:HAL(Hardware Abstraction Layer,硬件抽象层)是ST提供的一个跨平台、模块化的库,它为STM32的不同系列提供了一致的API接口,使得开发者可以更专注于应用程序的逻辑,而无需关心底层硬件细节。在本例中,HAL库将被用来操作ADC,读取内部温度传感器的数据。 3. **内部温度传感器**:许多STM32微控制器都集成了内部温度传感器,它可以测量芯片自身的温度。这对于系统监控或环境条件检测的应用非常有用。在STM32F429中,可以通过ADC通道读取其值,经过一定的计算转换成实际温度。 4. **ADC**:模拟数字转换器是单片机处理模拟信号的关键组件。在这个实验中,ADC1将被用来读取内部温度传感器的模拟信号,并将其转化为数字值。STM32F429的ADC支持多种工作模式,例如单次转换、连续转换等,可以根据应用需求进行配置。 5. **C++编程**:尽管STM32通常使用C语言进行开发,但这个实验选择了C++,这意味着代码可能利用了面向对象的特性,如类、对象和继承,以提高代码的可维护性和复用性。 6. **单片机编程**:这个实验属于嵌入式系统的范畴,涉及到如何在微控制器上编写和运行程序。开发者需要理解单片机的内存模型、中断系统、I/O操作等相关概念。 7. **视频讲解**:实验可能包括视频教程,这为学习者提供了直观的教学方式,能够更好地理解代码背后的原理和操作步骤。 在具体实现过程中,开发者首先会使用STM32CUBEMX配置ADC,设置合适的采样时间、转换分辨率、通道选择等参数。然后,通过HAL库的函数初始化ADC并开始转换。读取到的ADC值会经过一定的校准公式转换为实际温度值。这些温度数据可能会被显示在调试终端或者存储起来供后续处理。 通过这个实验,开发者不仅可以熟悉STM32的HAL库使用,还能掌握如何利用内部传感器获取环境信息,是学习STM32开发的好起点。同时,结合视频讲解,学习效果更佳。
2024-10-08 19:49:34 775KB HAL库 stm32
1