VGG16训练CIFAR10代码,通过学习小土堆的视频,对VGG16网络进行修改,训练CIFAR10
2022-04-11 16:09:04 515.86MB vgg16 pytorch cifar10 机器学习
1
人工智能 深度学习 cifar10数据集
2022-04-08 17:06:46 140.07MB 人工智能 深度学习
1
针对ImageNet,CIFAR10和MNIST的PyTorch对抗性攻击基准 ImageNet,CIFAR10和MNIST的PyTorch对抗性攻击基准(最先进的攻击比较) 该存储库提供了用于评估各种对抗攻击的简单PyTorch实现。 该存储库显示每个数据集的最新攻击成功率。 该存储库利用了攻击库,例如 , 等。 如果您对此存储库有疑问,请给我发送电子邮件( )或提出问题。 影像网 该存储库提供了一个包含1,000个类的小型ImageNet验证数据集。 该数据集每个班级有5张图像(总计5,000张图像)。 这是ImageNet验证数据集的子集。
2022-04-08 12:29:43 629.38MB deep-learning pytorch mnist imagenet
1
由于网络问题加载数据集可能加载不成功,下载后解压到C盘中.keras文件中既可使用
2022-04-06 12:05:23 140.06MB keras cnn 网络 c语言
1
专门针对视觉,我们创建了一个名为torchvision的包,其中包含用于常见数据集(例如 Imagenet,CIFAR10,MNIST 等)的数据加载器,以及用于图像(即torchvision.datasets和torch.utils.data.DataLoader)的数据转换器。 在本教程中,我们将使用 CIFAR10 数据集。 它具有以下类别:“飞机”,“汽车”,“鸟”,“猫”,“鹿”,“狗”,“青蛙”,“马”,“船”,“卡车”。 CIFAR-10 中的图像尺寸为3x32x32,即尺寸为32x32像素的 3 通道彩色图像。 classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
2022-04-06 03:12:23 399.51MB pytorch 图像分类 深度学习
1
PyTorch随机擦除的实现 用法 $ python main.py --block_type basic --depth 110 --use_random_erase --random_erase_prob 0.5 --random_erase_area_ratio_range '[0.02, 0.4]' --random_erase_min_aspect_ratio 0.3 --random_erase_max_attempt 20 --outdir results CIFAR-10的结果 模型 测试错误(5次运行的中位数) 训练时间 没有随机擦除的ResNet-preact-56 5.85 98分钟 ResNet-preact-56 w /随机擦除 5.22 98分钟 没有随机擦除 $ python -u main.py --depth 56 --block_type b
2022-03-15 17:39:16 512KB computer-vision pytorch cifar10 Python
1
WAGE量化网络 github代码,进行微调让其在tensorflow2.0, python3 环境下运行
2022-03-12 11:57:03 34KB 机器学习 量化 CNN
1
我就废话不多说了,大家还是直接看代码吧! import keras from keras.datasets import cifar10 from keras.preprocessing.image import ImageDataGenerator from keras.models import Sequential from keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Conv2D, MaxPooling2D, BatchNormalization from keras
2022-03-09 16:03:01 86KB AS IF keras
1
cifar10图片格式及将二进制文件转换成jpg的python程序
2022-03-08 15:27:32 52.51MB cifar10图片
1
这是pytorch初学者的游乐场,其中包含流行数据集上的预定义模型。 目前我们支持 mnist,svhn cifar10cifar100 stl10 亚历克斯网 vgg16,vgg16_bn,vgg19,vgg19_bn resnet18,resnet34,resnet50,resnet101,resnet152 squeezenet_v0,squeezenet_v1 inception_v3 这是MNIST数据集的示例。 这将自动下载数据集和预先训练的模型。 import torch from torch.autograd import Variable from utee import selector model_raw, ds_fetcher, is_imagenet = selector.select('mnist') ds_val = ds_fetcher(b
1