基于灰狼优化算法的机器人三维路径规划:mp-GWO与CS-GWO算法对比及详细代码注释,三维路径规划:基于灰狼改进算法的MP-GWO与CS-GWO机器人路径规划算法对比,内含详细代码注释,三维路径规划 基于灰狼改进算法的机器人路径规划mp-GWO和CS-GWO机器人路径规划算法 自由切GWO,CS-GWO算法进行对比。 内涵详细的代码注释 ,三维路径规划; 灰狼改进算法; 机器人路径规划算法; mp-GWO; CS-GWO; 算法对比; 代码注释,基于灰狼优化算法的三维机器人路径规划研究:mp-GWO与CS-GWO算法的对比与代码详解
2025-04-08 16:24:47 1.09MB 数据结构
1
改进麻雀搜索算法在FMD分解中的应用与优化——ISSA-fmd算法的研究与对比分析,改进麻雀搜索算法优化fmd分解(ISSA–fmd),改进麻雀搜索算法(ImprovedSparrow Search Algorithm,ISSA)是由Song W等人基于麻雀搜索算法提出一种改进麻雀搜索算法。 该算法通过三个改进策略,提高算法的收敛精度和避免陷入局部最优。 提供参考文献以及算法对比图。 改进策略: 1.基于混沌映射初始化种群策略 2.基于非线性递减权重更新发现者策略 3.改进加入者位置更新策略 ,ISSA; fmd分解; 混沌映射初始化种群策略; 非线性递减权重更新发现者策略; 改进加入者位置更新策略,改进ISSA算法优化FMD分解的探索与对比
2025-04-06 14:41:53 1.29MB
1
Canny算法的改进及FPGA实现,详细介绍FPGA的开发流程。
2025-04-06 09:49:24 984KB Canny
1
猕猴桃作为一种高经济价值的农作物,其叶片的健康状况对于果园的整体产量和果实品质具有重要影响。因此,及时准确地检测出猕猴桃叶片的病害对于病害防治具有重要意义。随着计算机视觉和人工智能技术的发展,基于深度学习的图像识别技术已成为农业病害检测的重要手段。YOLO(You Only Look Once)是一系列实时对象检测系统中的一个重要成员,因其速度快和检测精度高而受到广泛关注。YOLOv5作为该系列中的一个版本,尤其适合处理速度与准确性要求较高的场合。 猕猴桃叶片病害检测系统通常包含几个核心部分:数据集的构建、模型的训练、实时检测和结果的评估。在本系统中,使用了改进的YOLOv5模型作为核心算法。这种改进可能包括对网络结构的优化、训练方法的调整、损失函数的改进等多个方面,目的是为了提高模型在猕猴桃叶片病害检测上的准确性和鲁棒性。系统采用了大量的猕猴桃叶片病害图片进行训练,这些图片经过精心标注,每个病害区域都有精确的边界框和类别标签。 数据集的构建是深度学习模型训练的重要基础。在本系统中,数据集应该包含多种不同的病害类型,以及正常叶片的图片作为对比,以覆盖可能出现的各种情况。数据集的多样性和质量直接影响到模型的泛化能力和检测效果。在数据集构建的过程中,还需要对图片进行预处理,比如调整图片尺寸、归一化、数据增强等,以提高模型的训练效率和检测性能。 视频教程部分为用户提供了直观的学习资源,帮助用户理解整个系统的搭建过程。视频中可能涵盖了环境配置、代码解释、模型训练、结果测试等环节。这些教程不仅有助于技术人员掌握猕猴桃叶片病害检测系统的使用和开发,也使农业技术推广人员能够更加方便地学习和应用这一技术。 此外,源代码的提供使得有能力的开发者可以直接在原有基础上进行二次开发或优化,进一步提升系统的实际应用效果。源代码和数据集的开源共享也体现了科研工作者的开放态度,有利于促进学术交流和技术创新。 基于改进YOLOv5的猕猴桃叶片病害检测系统整合了先进的深度学习技术与丰富的实际应用场景。它不仅能够帮助农业工作者快速准确地识别病害,及时进行防治,还提供了完整的开发资源,为相关领域的研究者和开发者提供了便利。系统的设计兼顾了实用性与扩展性,为未来在其他作物病害检测方面的应用奠定了良好的基础。
2025-04-05 22:06:30 5.22MB
1
多策略增强型蛇优化算法的改进与实现——基于Matlab平台的三种策略运行效果展示,多策略混沌系统与反捕食策略相结合的双向种群进化动力学:Matlab实现改进的增强型蛇优化算法,多策略增强型的改进蛇优化算法-- Matlab 三种策略的提出: 1、多策略混沌系统 2、反捕食策略 3、双向种群进化动力学 运行效果如下,仅是代码无介绍 ,多策略增强型蛇优化算法; 改进; 反捕食策略; 双向种群进化动力学; 混沌系统; Matlab; 运行效果。,Matlab中的多策略蛇优化算法的改进及反捕食策略应用
2025-04-04 16:40:24 1.05MB xbox
1
海神之光上传的视频是由对应的完整代码运行得来的,完整代码皆可运行,亲测可用,适合小白; 1、从视频里可见完整代码的内容 主函数:main.m; 调用函数:其他m文件;无需运行 运行结果效果图; 2、代码运行版本 Matlab 2019b;若运行有误,根据提示修改;若不会,私信博主; 3、运行操作步骤 步骤一:将所有文件放到Matlab的当前文件夹中; 步骤二:双击打开main.m文件; 步骤三:点击运行,等程序运行完得到结果; 4、仿真咨询 如需其他服务,可私信博主; 4.1 博客或资源的完整代码提供 4.2 期刊或参考文献复现 4.3 Matlab程序定制 4.4 科研合作
2025-03-29 21:10:08 3.87MB matlab
1
融合多策略灰狼优化算法:源码详解与性能优越的学习资料,原创改进算法,包括混沌初始化、非线性控制参数及自适应更新权重等策略,融合多策略改进灰狼优化算法:源码详解与深度学习资料,高效性能与原创算法技术,融合多策略的灰狼优化算法 性能优越 原创改进算法 源码+详细注释(方便学习)以及千字理论学习资料 改进策略:改进的tent混沌初始化,非线性控制参数,改进的头狼更新策略,自适应更新权重 ,融合灰狼优化算法; 性能优越; 原创改进算法; 改进策略; 详细注释; 理论学习资料,原创灰狼优化算法:融合多策略、性能卓越的改进版
2025-03-26 17:04:42 1.01MB ajax
1
Unet 改进添加双交叉注意力模块(DCA),可以直接替换主干网络
2025-03-12 13:39:34 12KB
1
《CReport改进版——深入解析报表控件的优化与应用》 CReport,这是一个由郭家骏、王寒松等知名IT专家开发的报表控件,它在业界因其强大功能和灵活的应用性而广受赞誉。这个控件的出现,极大地简化了开发者在创建复杂报表时的工作流程,为数据展示提供了全新的解决方案。而我在此基础上进行了一些改进,旨在进一步提升其性能和用户体验。 报表控件是软件开发中不可或缺的一部分,尤其在企业管理、数据分析等领域,报表的生成和展示往往直接影响到决策者的判断和工作效率。CReport改进版在原版的基础上,对以下几个方面进行了优化: 1. **性能提升**:通过对内部算法的优化,提高了报表渲染速度,使得大量数据的处理更为流畅,减少了系统资源的占用,提升了整体运行效率。 2. **用户界面**:改进了用户界面设计,使其更符合现代审美,操作更加直观简便。新增了多种图表样式和自定义主题功能,以满足不同场景下的视觉需求。 3. **数据交互**:增强了数据交互能力,支持动态数据绑定和实时更新,使用户能够实时查看和分析数据变化。 4. **自定义功能**:增加了更多的自定义选项,如自定义列宽、行高、单元格样式等,让开发者能够根据项目需求定制报表样式。 5. **跨平台兼容**:考虑到多平台开发的需求,CReport改进版优化了跨平台兼容性,可以在Windows、Linux、Mac等操作系统上稳定运行。 6. **API拓展**:扩展了API接口,使得第三方开发者可以更方便地集成到自己的应用程序中,实现更多高级功能,如导出报表、打印预览等。 7. **错误处理**:强化了错误处理机制,能更好地捕捉和处理运行时错误,提高系统的稳定性。 8. **文档支持**:提供详尽的API文档和示例代码,帮助开发者快速理解和掌握CReport改进版的使用方法。 在实际应用中,CReport改进版可以广泛应用于财务报表、销售报告、库存管理等各种场景,通过丰富的图表类型(如柱状图、折线图、饼图等)和强大的数据处理能力,将复杂的数据转化为易于理解的可视化信息。 总结来说,CReport改进版是对原有报表控件的一次重大升级,它在保留原有优点的同时,通过一系列的改进和增强,使得报表的创建和展示变得更加高效、便捷且美观。无论你是企业开发者还是个人用户,CReport改进版都将成为你处理数据和展示信息的强大工具。
2025-03-04 17:55:37 383KB
1
标题中的“网络游戏-一种基于遗传算法改进的BP神经网络的温室环境预测反馈方法”实际上是一个研究主题,而非直接与网络游戏相关,而是将两种技术——遗传算法(Genetic Algorithm, GA)和反向传播(Backpropagation, BP)神经网络结合,应用于温室环境的预测反馈系统。这种应用旨在提高环境控制的精度,以优化农作物生长条件。 我们来理解遗传算法。遗传算法是一种模拟自然选择和遗传机制的全局搜索优化技术,通过模拟物种进化过程中的优胜劣汰、基因重组和变异等操作,寻找问题的最优解。在本研究中,遗传算法被用来优化BP神经网络的权重和阈值,以提升其预测性能。 BP神经网络是人工神经网络的一种,广泛用于非线性建模和预测任务。它通过反向传播误差信号来调整神经元之间的连接权重,从而逐步减小预测误差。然而,BP网络存在收敛速度慢、易陷入局部最优等问题,这正是遗传算法可以发挥作用的地方。 在温室环境预测中,关键因素包括温度、湿度、光照强度和二氧化碳浓度等。这些参数对植物生长有着显著影响。通过构建一个基于遗传算法改进的BP神经网络模型,可以更准确地预测未来的环境状态,从而提前调整温室的控制系统,如通风、遮阳、灌溉等,以维持理想的生长环境。 研究中可能涉及的具体步骤包括: 1. 数据收集:收集历史温室环境数据作为训练样本。 2. 预处理:对数据进行清洗、标准化,以便输入神经网络。 3. 构建模型:建立BP神经网络结构,并利用遗传算法优化网络参数。 4. 训练与验证:使用训练集对模型进行训练,验证集用于评估模型的泛化能力。 5. 预测反馈:模型预测未来环境状态,反馈到控制系统进行实时调整。 6. 性能评估:通过比较预测结果与实际环境数据的差异,评估模型的预测精度。 这种结合了遗传算法和BP神经网络的方法,不仅可以提高预测的准确性,还可以解决传统BP网络优化困难的问题,对于现代农业的精准化管理具有重要意义。通过这样的智能预测系统,温室种植者可以更有效地利用资源,降低能耗,同时保证作物的高产优质。
2025-03-03 21:07:20 518KB
1