本研究专注于分析和总结不同自然表面及云层的光谱特性,并提出了一种基于光谱分析的MODIS云检测算法。MODIS是中分辨率成像光谱仪(Moderate Resolution Imaging Spectroradiometer)的缩写,由美国宇航局(NASA)发射的地球观测卫星搭载,用以监测地球环境和变化。MODIS具有36个波段,覆盖可见光、近红外和热红外等区域,广泛应用于气候研究、资源探测、环境监测等多个领域。 文章首先概述了遥感影像中云对信息获取的影响,指出云是遥感信号传播的障碍物,会造成遥感数据利用率和精度的下降,因此云检测对于提高遥感数据的应用价值具有重要意义。目前,MODIS数据的云检测算法主要分为基于可见光反射率、基于近红外反射率和基于热红外通道亮温及亮温差的算法。尽管已有的算法取得了一定成果,但还没有一种算法能够适用于所有类型云的检测。 在本研究中,作者基于对不同地物及云层光谱特性的分析,提出了一个通用的多光谱云检测算法。该算法结合了MODIS影像的不同波段,特别是中红外6通道(1.64μm)和中红外26通道(1.38μm),利用云层在这些波段的特定光谱特性来识别云。 1. 反射光谱特性分析 1.1 云的反射光谱特性 云层在太阳光照射下,其反射率在可见光和近红外波段较高。由于云对太阳光的散射作用,反射率随波长增加而逐渐减小。特别是在中红外波段,由于大气水汽的影响,低层云的辐射难以到达传感器,而高层冰云(如卷云)由于其湿度低,具有较高的反射率。 1.2 植物的反射光谱特性 植物的反射光谱特性在可见光和近红外波段表现得较为明显。由于叶绿素的吸收作用,在蓝波段和红波段,叶绿素强烈吸收辐射能,形成吸收谷;而在这两个波段之间,由于吸收较少,形成绿色反射峰。在近红外波段,叶的反射及透射率较高,吸收较少。 1.3 土壤的反射光谱特性 土壤对太阳光的反射和吸收特性不同,不存在透射现象。土壤的反射率在不同波段存在波动,自然状态下的土地表面反射曲线呈现特定的“峰-谷”形态。 2. 多光谱云检测算法研究 本研究提出的多光谱云检测算法主要基于可见光通道(0.67μm)、中红外6通道(1.64μm)和中红外26通道(1.38μm)的组合。该算法能够有效地在不同地表覆盖条件下识别云层。例如,利用中红外通道内由于水汽吸收导致的地面辐射衰减现象,可以区分地表和高云系的卷云,因为卷云在这一通道的反射率较高。 3. 结论与应用 通过研究,证明了所提出的多光谱云检测算法在不同地表上具有良好的通用性和有效性。该算法能够为遥感影像处理提供准确的云覆盖信息,有助于提升遥感数据的利用率和质量。此外,该算法的研究成果不仅为云检测领域提供了新的方法,也为其他遥感应用中的目标识别、数据分类提供了理论和实践指导。 文章还提到,目前多数基于MODIS数据的多光谱云检测算法已经比较成熟并开始实际应用。然而,本研究提出的算法依然有其独特之处,特别是在不同下垫面上的通用性,有望在遥感数据处理的实践中得到更广泛的应用。随着技术的进步和算法的不断改进,相信未来能够开发出更加高效准确的云检测算法,为地球空间信息的获取提供有力支持。
2025-05-15 20:08:39 564KB 工程技术 论文
1
内容概要:本文介绍了一个用于高光谱图像分类的CNN-RNN混合模型及其在PyTorch中的实现。针对高光谱数据的特点,作者提出了一个创新的模型架构,利用CNN提取空间特征,RNN处理光谱序列。文中详细描述了数据预处理、模型构建、训练流程以及结果保存的方法,并分享了一些提高模型性能的技巧,如数据增强、随机种子设置、动态学习率调整等。最终,在Indian Pines和Pavia University两个经典数据集上实现了超过96%的分类准确率,仅使用20%的训练数据。 适合人群:从事遥感影像处理、机器学习研究的专业人士,特别是对深度学习应用于高光谱图像分类感兴趣的科研人员和技术开发者。 使用场景及目标:适用于需要高效处理高维高光谱数据的研究项目,旨在提升分类准确性的同时降低计算成本。目标是帮助研究人员快速搭建并优化基于深度学习的高光谱图像分类系统。 其他说明:提供的代码已在GitHub上开源,包含完整的数据处理、模型训练和评估流程。建议使用者根据自身数据特点进行适当调整,以获得最佳效果。
2025-05-11 08:29:00 112KB
1
基于CNN-RNN的高光谱图像分类项目报告:全套代码、数据集及准确率记录管理,高光谱图像分类:CNN-RNN深度学习模型的全套解决方案,高光谱图像分类CNN-RNN结合 pytorch编写 该项目报告网络模型,2个开源数据集,训练代码,预测代码,一些函数的 拿到即可进行运行,全套。 代码中加入了每一步的预测准确率的输出,和所有迭代次数中,预测精度最好的模型输出。 所有预测结果最后以txt文本格式输出保存,多次运行不会覆盖。 设置随机种子等等。 该项目在两个数据集上精度均可达96以上(20%的训练数据)。 ,高光谱图像分类; CNN-RNN结合; PyTorch编写; 网络模型; 开源数据集; 训练代码; 预测代码; 函数; 预测准确率输出; 最佳模型输出; txt文本格式保存; 随机种子设置; 精度达96以上,高光谱图像分类:CNN-RNN模型全解析报告
2025-05-11 05:05:46 4.75MB
1
在现代养蚕业中,蚕茧的质量和品质对于整个蚕桑产业的生存和发展至关重要。蚕茧的品质不仅关系到蚕丝的产量和质量,而且是影响缫丝工业原料茧商品价值的关键因素。其中,茧层含水率作为衡量蚕茧品质的一个重要指标,对丝质价值和解舒价值的评估具有显著影响,并可以用来实现蚕茧的等级划分。 传统的蚕茧质量检测方法依赖于有损的物理方法,例如剥茧取丝,这种做法不仅效率低下,而且会破坏蚕茧,不适合大规模快速检测的需求。随着科技的进步,无损检测技术在蚕茧品质评估中得到了越来越多的应用。 本文探讨了基于高光谱图像技术的蚕茧茧层含水率无损检测方法。高光谱图像技术是一种将传统光谱技术和图像技术结合起来的先进的分析方法,它能够获取材料在连续波长范围内的光谱图像,从而获得丰富的物质信息。通过分析这些图像中的光谱信息,可以识别出不同物质的特征波长,并据此对物质的成分进行识别和定量分析。 本研究中,研究者首先通过高光谱图像技术获取蚕茧的光谱信息,然后对这些光谱数据进行预处理,包括矢量归一化等步骤,以消除数据中的冗余信息,提高后续分析的准确性。在特征波长选取方面,采用了无信息变量消除算法(UVE)结合连续投影算法(SPA)的方法。这种方法可以有效筛选出与蚕茧茧层含水率相关的特征波长。 研究结果表明,通过这种方法选取的特征波长477nm、565nm、688nm和747nm对于预测蚕茧茧层含水率具有较好的效果。基于这些特征波长建立的偏最小二乘(PLS)模型,在校正集和验证集上的相关系数分别达到了0.5871和0.5457,显示出了一定的预测能力。尽管相关系数不是非常高,但对于无损检测技术来说,这已是一个有希望的开端。 为了进一步提高模型的预测准确性,未来的研究可以考虑更多的样本量,优化模型的参数设置,并且可能需要结合其他类型的光谱技术,如拉曼光谱或者近红外光谱,进行多模态数据融合分析,以获得更好的检测效果。 此外,本文还提到了相关的基金项目,如高等学校博士学科点专项科研基金和浙江省自然科学基金,说明这项研究得到了相应的科研经费支持。作者黄凌霞和通信联系人何勇的背景信息也表明了他们在农产品品质无损检测领域具有一定的研究基础和经验。 总体而言,本文提出的基于高光谱图像技术的蚕茧茧层含水率无损检测方法,为快速、高效地评估蚕茧品质提供了一种新的途径,具有重要的应用前景和研究价值。随着技术的进一步完善和优化,这项技术有望在养蚕业中得到广泛应用,从而推动整个行业的转型升级。
2025-05-04 22:54:16 324KB 首发论文
1
以新疆红富士苹果为研究对象,探讨应用高光谱图像技术和最小外接矩形法预测其大小的研究方法。提取苹果高光谱图像中可见红色区域受色度影响较小的713nm以及近红外区域793和852nm的3个波长图像,做双波段比运算处理。比较所得双波段比图像可知,852/713双波段比图像中背景和前景灰度对比度最大。对该图像做阈值分割以及形态闭运算去除果梗区域,使用8邻接边界跟踪法得到二值图像的轮廓坐标序列,采用最小外接矩形法求苹果的大小,与实测值建立回归方程。结果表明,基于高光谱图像技术采用波段比算法,结合最小外接矩形法,能够有效地检测苹果大小,预测值与实际值最大绝对误差为3.06mm,均方根误差为1.21mm。
2025-04-29 18:04:53 359KB 最小外接矩形
1
拉曼光谱是一种基于非弹性散射原理的光谱技术,主要用于研究物质的分子振动模式,通过这些振动模式,可以分析出样品的化学组成和分子结构。由于拉曼光谱技术在测量中对样品的损伤极小,同时能够快速获取大量化学信息,因此在临床医疗尤其是在癌症检测与诊断领域中扮演着越来越重要的角色。 激光技术的进步极大地推动了拉曼光谱在生物医学领域的应用,特别是近红外激光的使用,使得拉曼光谱在生物组织中的应用变得可能。另外,CCD探测器的出现和性能提升,以及傅里叶变换拉曼光谱技术的应用,都极大地提高了拉曼光谱技术的性能和可靠性。这些技术的进步不仅使得拉曼光谱成为材料分析、宝石鉴定等领域的有力工具,更是在生物医学领域,尤其是在癌症诊断方面显示出其巨大的潜力。 在癌症检测与诊断方面,拉曼光谱的应用主要体现在以下几个方面: 1. 子宫癌检测:利用遗传算法与偏最小二乘判别分析(GA-PLS-DA)技术,结合近红外拉曼光谱,可以对子宫癌组织进行快速识别。这种方法能够检测到癌前细胞的形成,并对癌变组织的生物分子变化进行分析,从而达到早期诊断的目的。 2. 膀胱癌和前列腺癌诊断:光纤近红外拉曼光谱技术能够在体外对膀胱镜和尿道前列腺切除术样本进行诊断。通过分析拉曼光谱与组织学特征的关联,可以建立用于诊断膀胱癌和前列腺癌的算法模型,并验证其准确性。 3. 血液成分分析:拉曼光谱技术可用于血液成分的快速检测,对于血液中化学物质的鉴定及浓度测定具有重要意义。 4. 动脉硬化检测:动脉硬化与心血管疾病密切相关,拉曼光谱技术能够帮助检测动脉壁的分子组成变化,对早期动脉硬化有警示作用。 在上述应用中,拉曼光谱技术的检测速度之快、损伤之小,使得其成为一种重要的临床诊断工具。以遗传算法、偏最小二乘分析为代表的化学计量学方法能够处理复杂的光谱数据,提取出诊断所需的特征信息,极大地提升了诊断的准确性。 而LabVIEW这一标签提示,该技术在拉曼光谱数据的采集、处理和分析中扮演着重要角色。LabVIEW是一种图形化编程语言,广泛应用于仪器控制、数据采集、数据分析等领域。在拉曼光谱研究中,LabVIEW可用来控制激光器、探测器的工作以及对收集到的数据进行实时处理和分析,它对提升实验室的自动化水平和促进研究的深入化起着关键作用。 拉曼光谱技术已经成为临床医疗中不可或缺的一部分,尤其在癌症检测与诊断领域显示出巨大的应用潜力。通过不断的技术创新和方法优化,拉曼光谱技术在提升诊断准确性、缩短检测时间以及降低成本方面,将为临床医学带来更多突破性的进展。
2025-04-24 18:47:47 296KB LabVIEW
1
拉曼光谱分析技术可以在分子水平上研究物质分子结构和生化组成信息,具有快速、准确、无创(或低创)等优点,已成为临床早期癌症检测和组织病理生理分析的重要工具。近年来,激光技术、光纤探测器件和光电检测技术的发展,不仅极大促进了新型拉曼光谱分析仪器与技术的研发,更进一步扩展了其临床应用的广度和深度,彰显出其独特的科学内涵与应用价值。对临床拉曼光谱分析技术的理论基础进行了阐述,归纳总结了临床快速拉曼光谱分析集成系统设计思路。在此基础上,以作者相关研究工作为例,探讨了拉曼光谱分析技术在临床癌症早期检测与病理分析中的应用特点,为推动相关基础研究及技术创新提供有益参考。
2025-04-24 18:47:36 12.16MB 医用光学 拉曼光谱 临床检测
1
微型光谱仪是随着科学技术发展而出现的一种小型化、智能化的光谱分析工具。其设计和实现满足了多学科融合和光谱测量多样化应用场景的需求。微型光谱仪的实现依赖于闪耀光栅和线阵CCD技术的结合,下面详细介绍这两项技术及其在微型光谱仪中的应用。 闪耀光栅(blazed grating)是一种重要的光学元件,它利用光栅的衍射作用,将不同波长的光分开,实现光谱的色散。在微型光谱仪中,闪耀光栅作为核心色散元件,负责将光源分解成不同波长的光谱线。闪耀光栅的设计特点是其闪耀角可根据不同应用需求调整,以优化光谱范围和分辨率。与传统折射元件相比,闪耀光栅具有成本低、效率高和体积小的优点,非常适合作为微型光谱仪的核心组件。 线阵CCD(charge-coupled device,电荷耦合器件)是一种基于硅的半导体器件,用于在光谱仪中进行光电转换。线阵CCD具有高感光灵敏度和低噪声的特性,能够准确捕捉到从闪耀光栅反射回来的光谱图像,并将光信号转换成电信号。与点阵CCD相比,线阵CCD更适合光谱仪使用,因为它一次可以捕捉整条光谱线,提高光谱采集的效率和准确性。在微型光谱仪中,线阵CCD的应用大幅度提升了光谱信息采集的速度和质量。 微型光谱仪的设计基于对称型Czerny-Turner光学结构,这是一种常用的分光系统。Czerny-Turner结构由两个凹面反射镜和一个闪耀光栅组成,能够有效聚焦不同波长的光到线阵CCD上。这种设计在保持微型光谱仪尺寸小巧的同时,还能确保较高的光谱分辨率和较宽的测量波长范围。 微型光谱仪的实时检测能力基于其硬件电路和计算机软件的协同工作。硬件电路负责将线阵CCD捕捉到的光信号转换为数字信号,然后通过A/D转换发送到计算机。在计算机端,通过编写相应的用户界面应用程序,可以实时显示图形化的光谱信息,并提供数据文件存储、以及对底层硬件采集系统的设备控制功能。用户可以通过界面轻松地查看光谱数据,进行必要的分析和处理。 微型光谱仪相较于传统大型光谱仪具有明显的优势。它小型化、集成化、多功能,对环境要求低,且价格低廉、稳定可靠、使用方便。这些特性使得微型光谱仪在实验研究和工程应用中具有重要价值。例如,它可以便捷地集成到其他系统中作为模块化功能使用,适合于需要现场实时监测和移动性强的应用场景。此外,微型光谱仪还便于二次开发和拓展,可根据不同的实际需求进行相应的修改和组装。 微型光谱仪的应用领域非常广泛,包括但不限于工业生产中的质量监控、生物医学领域的临床诊断、环境监测、食品安全检测等。在工业机电一体化的生产线上,微型光谱仪可作为现场实时监测工具,提高生产效率和产品质量。在科研领域,微型光谱仪可用于实验研究,提供实时、精准的光谱数据。 微型光谱仪的设计和应用也面临一些挑战。如何在保持微型化的同时不牺牲光谱分辨率和测量准确性,是研究人员需要解决的问题。此外,微型光谱仪的校准和维护也是影响其应用性能的关键因素,需要开发简单有效的校准方法和稳定的硬件设计。 微型光谱仪通过闪耀光栅与线阵CCD的结合,实现了传统光谱仪的微型化和智能化,满足了现代多学科交叉应用中对于光谱测量工具的多样化需求。未来,随着相关技术的进步和应用领域的拓展,微型光谱仪将展现出更广阔的前景。
2025-03-29 11:42:54 567KB 光谱测量
1
用于检测机载RGB,高光谱和LIDAR点云中单个树的多传感器基准数据集 树木的个体检测是林业和生态学的中心任务。 很少有论文分析在广泛的地理区域内提出的方法。 NeonTreeEvaluation数据集是在国家生态观测网络(NEON)中22个站点的RGB图像上绘制的一组边界框。 每个站点覆盖不同的森林类型(例如 )。 该数据集是第一个在多种生态系统中具有一致注解的数据集,用于共同注册的RGB,LiDAR和高光谱图像。 评估图像包含在此仓库中的/ evaluation文件夹下。 注释文件(.xml)包含在此仓库中的/ annotations /下 制作人:Ben Weinstein-佛罗里达大学。 如何根据基准进行评估? 我们构建了一个R包,以方便评估并与基准评估数据进行交互。 图像是如何注释的? 每个可见的树都进行了注释,以创建一个包围垂直对象所有部分的边界框。 倒下的树木没有注释。
2024-10-09 21:49:48 2GB Python
1
HypeLCNN概述 该存储库包含论文“具有用于高光谱和激光雷达传感器数据的光谱和空间特征融合层的深度学习分类框架”的论文源代码(正在审查中) 使用Tensorflow 1.x开发(在1.10至1.15版上测试)。 该存储库包括一套完整的套件,用于基于神经网络的高光谱和激光雷达分类。 主要特点: 支持超参数估计 基于插件的神经网络实现(通过NNModel接口) 基于插件的数据集集成(通过DataLoader接口) 培训的数据有效实现(基于内存的有效/基于内存/记录的) 能够在经典机器学习方法中使用数据集集成 神经网络的培训,分类和指标集成 胶囊网络和神经网络的示例实现 基于CPU / GPU / TPU(进行中)的培训 基于GAN的数据增强器集成 交叉折叠验证支持 源代码可用于在训练大数据集中应用张量流,集成指标,合并两个不同的神经网络以进行数据增强的最佳实践 注意:数据集文件太
2024-10-09 21:46:44 128KB deep-neural-networks tensorflow fusion lidar
1