EfficientDet:可扩展且高效的对象检测 最新对象检测架构EfficientDet的PyTorch实现 动机 截至我开始从事该项目时,GitHub上没有PyTorch实施与该模型参数的数量与原始论文相匹配。 所有现有的存储库都与最近发布的TensorFlow实施方式发生了很大的变化(例如,更改主干的步幅,缺少批处理规范化层,池化层中没有“相同”的填充策略,不同的训练超参数,不使用指数移动平均衰减等)。 这是我在PyTorch中重现EfficientDet的尝试。 我的最终目标是从原始论文复制训练周期并获得几乎相同的结果。 实施注意事项 除了TensorFlow实现之外,我还消除了卷积层中无用的偏差,然后进行了批量归一化,这导致了参数减少。 模型动物园 型号名称 重物 #params #params纸 肺动脉压 val mAP纸 D0 38.78万 390万 32.8 33.5
2022-04-06 21:17:04 1.24MB pytorch object-detection efficientnet efficientdet
1
swinUet官方代码中需要的预训练权重 权重名称:swin_tiny_patch4_window7_224.pth
2022-04-06 03:11:29 109.05MB 神经网路权重
1
今天小编就为大家分享一篇pytorch 在网络中添加可训练参数,修改预训练权重文件的方法,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2022-03-04 20:16:46 49KB pytorch 参数 预训练 权重
1
EfficientNet,pytorch源码和B0-B7八个预训练权重.
2022-02-22 17:06:33 688.28MB pytorch python 人工智能 深度学习
Mask_RCNN模型在COCO数据集上预训练权重mask_rcnn_coco.h5
2022-01-28 12:19:19 228.26MB Mask_RCNN
1
自用收集的基于ResNet50的Faster RCNN目标检测网络框架,附带可迁移学习的预训练权重用于自学备用,感谢Bubbliiing
2022-01-11 14:58:19 94.99MB pytorch
1
DarknetYolov3v4模型文件及对应预训练权重(tiny与非tiny)
2022-01-08 21:11:48 339.78MB Darknet
1
EfficienDet一般有好几个版本,可以根据自己的计算资源下载不同的预训练权重,但是预训练权重一般不太好下载,我上传到这里可供大家下载
2021-12-01 01:01:27 129.56MB 预训练权重
1
mask rcnn 模型在COCO数据集上预训练权重mask_rcnn_coco.h5
2021-11-18 19:24:17 229.15MB mask_rcnn
1
PyTorch图像模型 赞助商 非常感谢我的的支持! 除了以上链接的赞助商之外,我还从以下位置获得了硬件和/或云资源: 英伟达( ) TFRC( ) 我很幸运能够自己投入大量时间和金钱来支持这个项目和其他开源项目。 但是,随着项目范围的扩大,需要外部支持来继续当前的硬件,基础设施和电力成本轨迹。 什么是新的 2021年5月5日 从添加MLP-Mixer模型和端口预训练权重 从添加CaiT模型和预训练权重 从添加ResNet-RS模型和权重。 添加CoaT模型和权重。 感谢 为TResNet,MobileNet-V3,ViT模型添加新的ImageNet-21k权重和微调的权重。 谢谢 添加GhostNet模型和权重。 谢 更新ByoaNet注意模型 改进SA模块的初始化 将基于实验的独立Swin attn模块和swinnet 实验的一致“ 26t”模型定义。 添加改进的
2021-11-16 15:52:37 14.12MB pytorch resnet pretrained-models mixnet
1