安全技术-网络信息-模糊贝叶斯网络在电信客户流失分析中的研究与应用.pdf
2022-04-28 19:00:47 2.69MB 文档资料 安全 网络
人工智能09贝叶斯网络
2022-04-27 09:15:03 1.65MB 人工智能 网络 小说 数据仓库
一个将OWL本体直接转换成贝叶斯网络的原型系统
2022-04-17 10:31:08 2.38MB 贝叶斯网络 不确定性
1
在FULLBNT工具箱的基础上用matlab实现贝叶斯网络建模 概率分析 在FULLBNT工具箱的基础上用matlab实现贝叶斯网络建模 概率分析
2022-04-14 15:40:26 3KB 贝叶斯网络
1
随着电子商务领域的迅速发展,在线商品评价规模日益庞大,评价质量参差不齐,用户难以筛选有用评价信息做出购买决策,因此如何有效识别高质量评价信息成为重要议题。以在线商品评价的有用性投票为基础定义评价质量,使用贝叶斯网络表示在线商品评价的相似性及不确定性,通过对在线商品评价信息进行多维度特征统计,构建在线商品评价质量评估模型,使用概率推理机制对在线商品评价质量进行分类预测,并给出评价质量分类置信度。在真实数据集上验证模型有效性及高效性。
2022-04-12 19:57:46 641KB 论文研究
1
风能是一种清洁能源,有望带来巨大的社会和环境效益,在中华民国,政府支持和鼓励将风能发展作为向可再生能源转变的一个要素。 然而,近年来,在海上风力发电建设以及伴随着海上风力发电场的快速推广和发展的相关生产过程中出现了海上安全问题。 因此,有必要对海上风电场生命周期的各个阶段进行风险评估。 本文报告了基于动态贝叶斯网络的风险评估模型,该模型执行海上风电场海上风险评估。 这种方法的优点是贝叶斯模型表达不确定性的方式。 此外,此类模型允许在虚拟环境中模拟和重新制定事故。 这项研究有几个目标。 探索了海上风电项目风险识别和评估理论与方法,以识别海上风电场生命周期不同阶段的风险来源。 在此基础上,建立了带有Genie的动态贝叶斯网络模型,并对其在海上风电场生命周期不同阶段进行风险分析的有效性进行了评估。 研究结果表明,动态贝叶斯网络方法可以有效,灵活地进行风险评估,以响应海上风电建设的实际情况。 历史数据和几乎实时信息相结合,以分析海上风电建设的风险。 我们的结果有助于讨论有关安全和降低风险的措施,这些措施一旦实施便可以提高安全性。 这项工作对于海上风电的安全发展具有参考价值和指导意义。
1
对作战行动方案进行效能评估实现了为指挥员提供决策辅助。分析了作战行动方案中 作战行动之间的依赖关系,建立了作战行动方案效能模型和相应的贝叶斯网络,用贝叶斯方法对作 战行动方案进行了效能评估和优选。以某联合登岛作战为案例的实验表明,该方法较好地处理了 作战行动方案的不确定性和复杂性,评估结果可以为指挥员的决策提供参考。
2022-04-12 19:57:03 938KB 效能评估 贝叶斯
1

朴素贝叶斯分类器不能有效地利用属性之间的依赖信息, 而目前所进行的依赖扩展更强调效率, 使扩展后分类器的分类准确性还有待提高. 针对以上问题, 在使用具有平滑参数的高斯核函数估计属性密度的基础上, 结合分类器的分类准确性标准和属性父结点的贪婪选择, 进行朴素贝叶斯分类器的网络依赖扩展. 使用UCI 中的连续属性分类数据进行实验, 结果显示网络依赖扩展后的分类器具有良好的分类准确性.

1
将课程教学资源融合到学生模型构建中,描述了包括领域知识拓扑结构的建立、条件概率表学习算法的推理的详细过程,最终得到了学生模型中关于章节知识项的贝叶斯网络结构图,并通过一个实验系统对个性化教学系统中学生模型建构的整个框架的可行性进行了验证。
2022-04-08 21:57:25 159KB 个性化教学
1
动态贝叶斯网络(DBN)广泛应用于各种生物网络的建模,包括基因调控网络。 由于学习静态贝叶斯网络的几个 NP-hardness 结果,大多数学习 DBN 的方法都是启发式的,使用局部搜索(如贪心爬山)或元优化框架(如遗传算法或模拟退火)。 我们提出了 GlobalMIT,这是一个工具箱,用于使用最近引入的基于信息理论的评分指标互信息测试 (MIT) 来学习全局最优 DBN 结构。 在 MIT 下,可以在多项式时间内高效地实现全局最优 DBN 的学习。 该工具箱是在 Matlab 中实现的,还有搜索引擎的 C++ 独立实现以提高性能。 该项目由澳大利亚维多利亚州莫纳什大学 Gippsland 信息技术学院的生物信息学和系统生物学小组进行。 该项目由 Vinh Nguyen 管理。 最新版本的工具箱可在以下网址找到: http : //code.google.com/p/globalm
2022-04-08 18:34:01 1.53MB matlab
1