一位全加器、八位串行可控加减法器。circ文件,下载后直接用logisim打开即可。只实现了一位全加器、八位串行可控加减法器,其他部分没有实现。
2024-11-07 17:15:58 395KB 计算机组成原理 logisim画CPU
1
24位、4通道模数转换、数据采集系统概述: 在过程控制和工业自动化应用中,±10 V满量程信号非常常见;然而,有些情况下,信号可能小到只有几mV。用现代低压ADC处理±10 V信号时,必须进行衰减和电平转换。但是,对小信号而言,需要放大才能利用ADC的动态范围。因此,在输入信号的变化范围较大时,需要使用带可编程增益功能的电路。 该电路设计是一种灵活的信号调理电路,用于处理宽动态范围(从几mV p-p到20 V p-p)的信号。该电路利用高分辨率模数转换器(ADC)的内部可编程增益放大器(PGA)来提供必要的调理和电平转换并实现动态范围。 该电路包含一个ADG1409多路复用器、一个AD8226仪表放大器、一个AD8475差动放大器、一个AD7192 Σ-Δ型ADC(使用ADR444基准电压源)以及 ADP1720稳压器。只需少量外部元件来提供保护、滤波和去耦,使得该电路具有高集成度,而且所需的电路板(印刷电路板[PCB])面积较小 适合宽工业范围信号调理的灵活模拟前端电路: 如上所示电路解决了所有这些难题,并提供了可编程增益、高CMR和高输入阻抗。输入信号经过4通道ADG1409 多路复用器进入 AD8226低成本、宽输入范围仪表放大器。AD8226低成本、宽输入范围仪表放大器。AD8226提供高达80dB的高共模抑制(CMR)和非常高的输入阻抗(差模800ΩM和共模400ΩM)。宽输入范围和轨到轨输出使得AD8226可以充分利用供电轨。 24位、4通道模数转换、数据采集系统附件内容截图:
2024-11-07 17:06:25 2.76MB 电路方案
1
ISAR(Inverse Synthetic Aperture Radar)仿真到成像流程是一个涉及多个步骤的技术过程,主要用于雷达图像的生成。本文将详细阐述这一流程的关键环节。 启动FEKO软件,选择CADFEKO模块,以便加载和准备目标模型。在导入模型后,可能需要对模型的方向进行调整。"Axis direction"参数用于设定旋转轴,例如(0,0,1)表示沿着N方向进行旋转。"Rotation angle"则是设置模型旋转的角度,确保模型在正确的位置和姿态。 接着,检查模型的中心位置。如果模型不在坐标轴中心,可以通过调整"From"和"To"参数来移动模型,使其居中。例如,若模型需要沿Y轴负方向移动1米,可以设置相应的参数。 在尺寸调整阶段,确保飞机的长和宽小于12米,推荐尺寸约为10米左右,但长边不应小于8米。利用"Measure Distance"工具测量模型尺寸,根据需要进行调整。 接下来,配置仿真参数。全选模型面片,右键选择"Properties",在"Solution"标签页下选择合适的算法。然后,将CF_ISAR_Resolution.lua脚本拖入CADFEKO,输入期望的精度、范围和主频,点击确定生成参数列表。添加变量lam = c0/f0(其中c0为光速,f0为主频),并在Mesh部分设置自定义网格大小,如lam*5作为Triangle edge length。 在设置求解器时,取消选中特定选项,保存模型。使用CreateSimulation_fromPosition.lua脚本批量执行仿真,指定模型文件(.cfx格式)和轨迹文件,以及不含中文的输出文件夹名称,保存设置后开始仿真。 仿真完成后,进入POSTFEKO进行成像处理。打开.Fek模型文件,运行PF_ISAR脚本,选定View angle和angle range。记录下预成像后控制台显示的ang0sel.Value和angrsel.Value值。 接着运行PostMakeImages.lua脚本,选择CADFEKO保存文件的文件夹,并输入之前保存的两个角度值。这将按设定的角度范围对所有文件生成图像,保存在脚本目录下。 生成视频。运行ShowImage.exe,选择ISAR图片所在文件夹和输出视频路径,生成的视频文件名为camer_radar.avi。 总结来说,ISAR仿真到成像的过程包括模型导入、定向、尺寸调整、参数配置、批量仿真、POSTFEKO成像和视频生成等步骤,每个环节都需要精确操作以确保最终图像的质量。在整个流程中,Lua脚本起到了关键作用,用于自动化和定制化不同阶段的操作。正确理解并掌握这些步骤,对于成功进行ISAR仿真至关重要。
2024-11-07 17:03:40 1.39MB lua
1
在电磁兼容领域,HFSS(High Frequency Structure Simulator)是一款强大的三维电磁场仿真软件,用于解决高频和微波组件的设计问题。本大作业涉及到的主要知识点包括带通滤波器的仿真、屏蔽效应的模拟、导弹模型的分析以及天线耦合度的计算。 我们来看滤波器的仿真部分。滤波器是电磁兼容设计中的关键元件,其作用是允许特定频率范围内的信号通过,而阻止其他频率信号。在这个作业中,我们分别进行了滤波器1和滤波器2的仿真。初始滤波器的设计通常是基于某种基本结构,如LC网络或微带结构。通过增加金属通孔或拓展枝节,我们可以调整滤波器的特性,例如改变带宽、阻带抑制等。图1和图2展示了仿真模型及S参数曲线,其中S参数(S11, S12, S21, S22)是衡量滤波器性能的重要指标,它们描述了输入和输出信号之间的相互关系。为了获得更精确的仿真结果,通常需要增加采样点的数量,如将Count设置为1001,使得曲线更加平滑,能更准确地反映出滤波器的频率响应。 作业三关注的是屏蔽效果的仿真。在电磁兼容中,屏蔽是为了减少外部电磁干扰对内部电路的影响,或者防止内部设备产生的电磁辐射泄漏出去。未加屏蔽时,S参数会显示出较高的反射和传输,而添加了屏蔽后,尤其是在中心频率为3.37GHz的情况下,S参数显著降低,表明屏蔽有效降低了信号的透过和反射,提高了系统的电磁兼容性。 接下来是导弹模型的仿真。导弹作为复杂的电子系统,其内部的电磁环境极其重要。通过HFSS进行建模和仿真,可以评估导弹在飞行过程中内部电子设备间的相互干扰,确保通信和导航系统的稳定工作。 作业五涉及的是天线耦合度的计算。耦合度是衡量两个天线之间能量交换程度的指标,对于天线阵列设计和无线通信系统优化至关重要。在公式推导和数值计算中,可能使用了耦合系数、互易性原理等理论,通过对不同参数的调整来分析耦合度的变化,以达到最佳设计效果。误差分析则有助于理解计算结果的精度,并指导模型改进。 总结来说,这个电磁兼容大作业涵盖了HFSS在滤波器设计、屏蔽分析、复杂系统仿真和天线耦合度计算等多个方面的应用,充分体现了HFSS在电磁兼容领域的重要性和实用性。通过这些仿真和计算,学生能够深入理解电磁场的性质,提高其在实际工程问题中的解决能力。
2024-11-07 16:56:08 4.48MB HFSS 电磁兼容
1
本报告为广东工业大学数字逻辑电路实验报告,本报告包含了整个学期的实验(包括答辩实验和非答辩实验),并且所有实验都有详细的连接路线,对于一部分实验包含测试模块和函数模块的代码。本人的实验分数全班最高,报告比较详细,值得参考。 ### 广东工业大学数字逻辑电路实验报告知识点梳理 #### 一、实验背景及目标 - **学校与专业信息**: - 学校:广东工业大学 - 专业:计算机学院 - 时间:20年 - **实验报告性质**: - 报告类型:数字逻辑与系统设计实验报告 - 内容覆盖范围:整个学期的实验项目,包括答辩实验和非答辩实验 - 特点:包含详细的连接路线,部分实验附有测试模块和函数模块代码 - 成绩情况:作者实验分数全班最高 - 适用对象:适用于需要参考高质量实验报告的学生 #### 二、实验内容概览 - **实验名称**:基本门电路及门电路综合实验 - **实验目的**: - 了解基本门电路的主要用途及其逻辑功能。 - 熟悉数字电路实验箱的使用方法。 - 掌握利用基本门电路实现具体电路的方法。 - 掌握电路变换的方法。 #### 三、实验器材 - **主要设备**:DIGILOGIC-2011数字逻辑及系统实验箱 - **辅助工具**:逻辑笔、示波器、数字万用表 - **核心元件**: - 74HC00(与非门) - 74HC02(或非门) - 74HC04(非门) - 74HC08(与门) - 74HC32(或门) - 74HC86(异或门) #### 四、实验原理 - **数字电路概述**:数字电路的研究对象是电路输入与输出之间的逻辑关系,通过组合不同的逻辑门电路实现。 - **门电路功能介绍**: - 与非门(74HC00):只有当所有输入均为1时,输出为0;其他情况下输出为1。 - 或非门(74HC02):只有当所有输入均为0时,输出为1;其他情况下输出为0。 - 非门(74HC04):输入与输出相反。 - 与门(74HC08):只有当所有输入均为1时,输出为1;其他情况下输出为0。 - 或门(74HC32):只要有输入为1,输出为1;所有输入为0时输出为0。 - 异或门(74HC86):输入相同时输出为0;输入不同时输出为1。 #### 五、实验结果与数据处理 - **基本门电路验证**: - 使用LED灯和逻辑笔验证每个门电路的逻辑状态。 - 详细记录了每个门电路在不同输入情况下的输出状态。 - **实验案例分析**: - 举重比赛裁判表决电路: - 方案一与方案二的输入输出状态对比。 - 交通灯故障检测电路: - 不同输入状态下电路的输出变化情况。 #### 六、组合逻辑电路实验 - **实验目的**: - 测试编码器、译码器、数据选择器、数值比较器、全加器和集成数码显示译码器的工作原理和逻辑功能。 - **实验器材**: - 8-3编码器(74HC148) - 3-8译码器(74HC138) - 4选1数据选择器(74HC153) - 4位数值比较器(74HC85) - 4位全加器(74HC283) - 集成数码显示译码器(74HC4511) - 4个数字共阴极八段显示数码管(LN3461Ax) #### 七、实验总结与讨论 - **基本门电路特性总结**: - 详细阐述了每种基本门电路的逻辑特性。 - **组合逻辑电路实验成果**: - 描述了各个组合逻辑电路的功能及其实现方法。 - 分析了实验过程中遇到的问题及解决方案。 - **实验反思**: - 对实验过程中可能存在的问题进行了思考,并提出了改进建议。 ### 结论 本实验报告详细介绍了广东工业大学计算机学院学生在数字逻辑电路方面的学习成果。通过实验操作,不仅加深了对基本门电路工作原理的理解,还掌握了利用这些基本单元构建复杂组合逻辑电路的能力。此外,通过实际操作,学生能够更好地理解和应用数字电路理论知识,为后续的学习和研究打下坚实的基础。
2024-11-07 16:04:55 8.03MB 广东工业大学 实验报告
1
### dm9000a实用电路解析 #### 一、dm9000a概述 dm9000a是一款高性能、低功耗的物理层(PHY)处理网络连接芯片,广泛应用于嵌入式系统中作为以太网接口控制器。该芯片支持10BASE-T与100BASE-TX标准,能够实现高速数据传输,并具备多种功能特性,如自动协商、全双工/半双工模式切换等。 #### 二、dm9000a实用电路特点 dm9000a实用电路设计主要包含了芯片的基本配置及其与其他外围元件的连接方式。电路图提供了详细的原理图,便于开发者快速理解和应用。以下是电路图中的几个关键部分: 1. **电源部分**:包括芯片所需的电源电压输入(如+3.3V)以及各种地线(如AGND、DVDD等)的分配。 2. **时钟信号**:电路中包含用于提供时钟信号的元件。 3. **网络接口**:通过特定的引脚实现与外部网络设备的物理连接。 4. **控制信号**:包括复位信号(RST#)、中断请求(INT)等。 5. **存储器接口**:为了配置芯片,通常会通过外部EEPROM进行设置。 #### 三、电路图详解 电路图中包含了dm9000a芯片与各种外围元件的连接情况。下面将对这些元件及它们的作用进行详细介绍: 1. **电阻与电容**:电路中使用了不同阻值的电阻和电容,用于滤波、分压等功能。例如,多个0.1μF的电容用于去耦,确保电源稳定;而4.7kΩ和6.8kΩ的电阻则用于信号的限流或分压。 2. **LED指示灯**:电路图中包含了三个LED指示灯(LED1、LED2、LED3),分别用于显示不同的状态信息。例如,LED1可能表示电源状态,LED2表示网络链接状态等。 3. **外部EEPROM**:电路中还包含了一个93LC46/SOP8封装的EEPROM存储器,用于存储芯片的配置信息。这有助于简化初始配置过程。 4. **dm9000a芯片引脚说明**: - **电源引脚**:如+3.3V为芯片供电,AGND为模拟地,DVDD为数字地等。 - **数据总线**:SD0至SD7用于数据传输。 - **控制信号**:CS#、IOR#、IOW#等用于控制读写操作。 - **中断信号**:INT用于中断请求。 - **复位信号**:RST#用于芯片复位。 - **LED控制信号**:LED1、LED2等用于控制LED状态。 - **网络接口**:TX+、TX-、RX+、RX-用于网络信号传输。 5. **变压器**:电路中还标注了参考变压器型号(YT37-1107S),这是用于连接外部网络的关键组件之一。 #### 四、电路图中的特殊标记 - **Preliminary(for Reference Only)**:表示此电路图仍处于初步阶段,仅供参考。 - **DM9000A48PIN**:表明该芯片为48引脚封装版本。 - **CS# LOW ACTIVE**:表示片选信号为低电平有效。 - **IOR# LOW ACTIVE**:表示输入/输出读取信号为低电平有效。 - **IOW# LOW ACTIVE**:表示输入/输出写入信号为低电平有效。 - **INT HIGH ACTIVE**:表示中断信号为高电平有效。 - **RST# LOW ACTIVE**:表示复位信号为低电平有效。 - **INT Active Output Select**:用于选择中断信号的激活方式。 - **WAKEUP Pull HIGH CS Active High** / **WAKEUP Not Pull CS Active Low**:用于描述唤醒信号如何影响片选信号的状态。 #### 五、总结 dm9000a实用电路为开发者提供了一个清晰的参考示例,帮助他们更好地理解如何利用这款芯片构建网络接口解决方案。通过仔细研究电路图及其各个组成部分的功能,可以更有效地利用dm9000a芯片的优势,从而实现高效稳定的网络连接。
2024-11-07 15:03:29 146KB dm9000a
1
太阳能电池SCAPAS仿真软件是一款专门用于模拟和分析太阳能电池性能的专业工具。它结合了物理模型和工程计算方法,为科研人员和工程师提供了一个高效、精确的平台来研究和优化太阳能电池的设计与工艺。 SCAPAS(Solar Cell Analysis and Process Simulation)的核心功能包括: 1. **电池结构建模**:SCAPAS允许用户创建各种类型的太阳能电池结构,包括单晶硅、多晶硅、薄膜电池以及新型的第三代太阳能电池。用户可以定义不同层的材料属性,如厚度、折射率、电导率等。 2. **光电转换效率计算**:通过输入电池的光学、电学参数,软件能够计算出电池在不同光照条件下的短路电流、开路电压、填充因子和光电转换效率。 3. **温度效应模拟**:太阳能电池的性能受温度影响显著,SCAPAS能模拟电池在不同环境温度下的工作状态,帮助理解温度对电池性能的影响。 4. **光照强度和角度依赖性分析**:SCAPAS可以模拟太阳光入射角变化时电池的响应,这对于设计具有最佳光线捕获能力的电池结构至关重要。 5. **工艺过程仿真**:该软件还支持对电池制造过程中的关键步骤进行仿真,如扩散、刻蚀、沉积等,以优化制程参数,提高电池性能。 6. **数据分析和可视化**:SCAPAS提供了丰富的数据处理和图表展示功能,用户可以轻松地分析仿真结果,对比不同设计方案,找出最佳性能的电池结构。 压缩包内的文件说明: - `setup.exe`:这是安装程序,用于在用户的计算机上安装SCAPAS软件。 - `nidist.id`:可能是一个安装配置文件,包含了安装过程中的某些特定设置或验证信息。 - `setup.ini`:安装配置文件,通常包含安装路径、组件选择等信息,用于指导安装过程。 - `bin`:这个文件夹很可能包含了SCAPAS软件的可执行文件和其他运行时库,是软件运行所必需的部分。 - `license`:软件许可证文件,包含了软件使用许可条款和条件,用户需遵循才能合法使用软件。 - `supportfiles`:辅助文件夹,可能包含帮助文档、示例文件、库文件或其他支持软件运行或用户操作的资源。 SCAPAS是一款强大的工具,能够帮助科研和工程团队深入理解和改进太阳能电池的性能,推动清洁能源技术的发展。通过使用这款软件,用户可以进行精确的仿真,从而在实际制造之前优化电池设计,减少研发成本,提高太阳能电池的效率和可靠性。
2024-11-06 11:50:38 18.72MB
1
光伏电池的MATLAB仿真模型是太阳能发电领域中的一个重要研究工具,它可以帮助我们理解和优化光伏电池的工作原理、性能特征以及在不同环境条件下的发电效果。MATLAB(Matrix Laboratory)是一款强大的数学计算软件,其内置的Simulink环境非常适合构建动态系统的仿真模型。 在MATLAB中,光伏电池模型通常包括以下几个关键部分: 1. **光伏电池物理模型**:光伏电池的基本工作原理基于光电效应,即光子撞击半导体材料,使电子从价带跃迁到导带,形成电流。在MATLAB中,可以通过建立PN结模型来模拟这一过程,考虑光照强度、温度、串联电阻和并联电阻等因素对电池性能的影响。 2. **环境参数**:光照强度、温度和太阳辐射角度等环境因素对光伏电池的效率有显著影响。在仿真中,这些参数可以通过气象数据或特定设置进行调整,以研究不同条件下的电池性能。 3. **电路模型**:光伏电池是电能产生的一部分,通常与负载、逆变器和其他电池组件连接。在MATLAB中,可以构建RLC(电阻、电感、电容)电路模型,模拟电池与外部电路的交互。 4. **最大功率点跟踪(MPPT)**:为了最大化光伏电池的输出功率,需要实时跟踪其最大功率点。MATLAB中的PID控制器或Perturb and Observe算法可以用于实现这一功能。 5. **仿真结果分析**:通过仿真,可以得到光伏电池的电压-电流曲线(I-V曲线)、功率-电压曲线(P-V曲线)等关键数据。这些数据有助于评估电池的性能,如开路电压(Voc)、短路电流(Isc)和最大功率点(MPP)。 6. **系统优化**:通过对仿真模型的参数调整,可以探索如何优化电池设计,例如改变电池的厚度、掺杂浓度或者改善封装材料,以提高效率或降低成本。 7. **多体系统模型**:在复杂系统中,可能需要考虑多个光伏电池串联或并联,以及它们之间的相互影响。MATLAB的多体系统模型能够处理这种复杂性,提供更真实的系统行为预测。 在压缩包文件"67e564bfb0d24e1db1fe63bb06809961"中,可能包含的资源有光伏电池模型的MATLAB代码、Simulink模型文件、环境参数数据、仿真结果以及相关的说明文档。通过这些资源,用户可以学习和研究光伏电池的仿真过程,进一步理解太阳能发电技术,并可能用于教学、科研或工程应用中。
2024-11-06 11:14:26 11KB 光伏电池 仿真模型
1
HMC7044 是一款高性能时钟发生器芯片。 一、芯片配置 电源连接:确保正确连接芯片的电源引脚,包括 VDD 和 GND。通常需要稳定的电源供应以保证芯片正常工作。 输入时钟:根据设计需求,将合适的参考时钟信号连接到芯片的输入时钟引脚。输入时钟的频率和特性应符合芯片的规格要求。 控制接口:HMC7044 通常提供多种控制接口,如 SPI(Serial Peripheral Interface)或 I2C(Inter-Integrated Circuit)。通过这些接口,可以对芯片进行配置和控制。 SPI 配置:连接 SPI 总线的时钟、数据输入和数据输出引脚到相应的微控制器或控制电路。根据芯片的数据手册,了解 SPI 通信协议和寄存器地址,以便进行正确的配置。 I2C 配置:连接 I2C 总线的时钟线和数据线到微控制器或其他 I2C 主控设备。使用合适的 I2C 地址和命令来配置芯片的功能。 输出配置:根据应用需求,配置芯片的输出时钟参数,如频率、相位、占空比等。可以通过控制寄存器来设置这些参数。 二、使用说明 初始化:在使用 HMC7044 之前,需要进行初始化操作。这包括设置控制
2024-11-06 09:35:52 6.31MB FPGA
1
采用matlab编制的仿真软件 针对惯导对准算法进行仿真
2024-11-04 23:16:03 1.73MB
1