PCB走线线宽与电流的关系
2021-04-19 18:05:31 13KB PCB设计
1
自己做的一个小程序,代码也不是太多,照着书的做的,功能完全实现了,计算机图形学的画图程序。 自己做的一个小程序,代码也不是太多,照着书的做的,功能完全实现了,计算机图形学的画图程序。
2021-04-09 12:06:48 4.65MB VC6.0
1
波长扫描激光器光谱线宽的动态测量技术研
2021-03-04 15:09:34 1.62MB 研究论文
1
提出了一种利用双池受激布里渊散射(SBS)系统选用混合介质,进而测量SBS介质布里渊线宽的方法.在紧凑双池SBS系统的放大池中放入待测介质,在振荡池中放入布里渊频移可调的混合介质,测出放大池待测介质增益系数随布里渊频移偏离的洛伦兹曲线,该曲线半高处的线宽即为待测介质的布里渊线宽.实验上在Nd:YAG调Q激光系统中,选用CCl4/C6H6混合介质,测量了四氯乙烯(C2Cl4)、六氯丁二烯(C4Cl6)、丙酮(C3H6O)和正己烷(C6H14)等介质的布里渊线宽,其值与理论计算值或其他文献值很接近.
1
将激光器锁定于超稳定法布里珀罗(F-P)腔的腔长上,是目前获得超窄线宽激光输出的重要手段。因此,激光器的频率稳定性依靠于F-P腔腔长的稳定性。振动引起的谐振腔形变是影响超稳定光学谐振腔稳定性的主要因素。利用有限元分析的方法定量地分析了振动环境中两种实验室常用的F-P腔在不同支撑方式下的弹性形变情况。数值计算结果给出了这两种形状的超稳定F-P腔的最优化支撑方式,使其对振动引起的腔长变化达到最小化,使振动环境下的超稳腔腔长变化最小达到10-12 m。
2021-02-25 22:03:37 2.01MB 激光器 光学谐振 激光频率 光学频率
1
多波长放大是能够有效抑制窄线宽光纤放大器中受激布里渊散射(SBS)效应的一种新方法。对其基本理论进行了详细的介绍,并按照波长间隔的不同将其分为大波长间隔和小波长间隔多波长放大两种类型。综述了这两类多波长放大方法在理论研究和实验研究方面取得的重要成果,分析了它们各自在抑制SBS上的优势,指出大波长间隔多波长放大在提高单频激光输出功率方面具有明显优势,而小波长间隔多波长放大在进一步提升高功率光纤激光相干合成系统功率方面具有巨大的应用价值。
2021-02-09 14:06:05 8.53MB 光纤光学 窄线宽光 受激布里 多波长放
1
设计并验证了一种采用全光栅光纤(AGF)作为随机反馈介质的窄线宽随机光纤激光器(RFL)。基于相位掩模法在利用拉丝塔在线制作的单模光纤纤芯上连续刻写长度为0.3 mm的布拉格光栅(FBG)约4.3×10
2021-02-07 12:06:00 5.46MB 激光器 随机光纤 窄线宽 光纤布拉
1
提出了一种激光线宽测量新方法—系统参数不敏感型循环损耗补偿循环延迟自外差法(LC-RDSHI)。通过对系统输出功率谱密度函数进行推导以及拍频功率谱仿真,分析讨论了该方法对系统参数不敏感的特性。在此基础上,搭建相应实验装置,观测了系统参数对LC-RDSHI输出功率谱的影响,发现实验观测结果与理论分析相吻合。此外,基于不同的实验系统参数,将本方法与传统的LC-RDSHI进行了线宽测量比较。结果表明,系统参数不敏感型LC-RDSHI具有更高的线宽测量精度,并且测试过程更加简单,从而具有更好的应用前景。
2021-02-06 19:07:24 7.87MB 激光器 线宽测量 循环延迟 功率谱
1
根据π相移光纤光栅的温度可调谐原理, 使用半导体制冷器(TEC)和制冷片控制π相移光纤光栅的温度, 从而改变其中心波长。随着温度升高, π相移光纤光栅的中心波长向长波方向线性漂移, 温度从0 ℃变化到95 ℃时, 中心波长从1548.921 nm变化到1550.664 nm, 波长改变量为1.743 nm, 灵敏度约为18.35 pm/℃。为了验证π相移光纤光栅温度调谐的特性, 采用与其匹配的高反光纤光栅构成了C波段环形腔光纤激光振荡器, 利用π相移光栅的窄带滤波特性实现了窄线宽激光输出, 并通过控制π相移光栅的温度实现了输出激光波长的连续调谐。
2021-02-04 13:10:50 3.51MB 光栅 温度调谐 π相移光 窄线宽激
1
C# winform GDI 绘图板 源码 可实现铅笔绘图,直线、圆、椭圆、矩形绘图、可调整颜色、线宽,结构清晰,适合初学者研究
2019-12-21 21:11:37 71KB C# winform GDI 绘图板
1