频率转换效率的研究,严祥安,宋建平,通过Stark啁啾快速绝热通道(Stark chirp rapid adiabatic passage, SCRAP)技术在-型原子系统中实现最大相干性,以研究系统的四波混频过程。为提
2025-06-20 20:50:47 494KB 首发论文
1
内容概要:本文详细介绍了利用UDEC7.0软件进行煤层开挖数值模拟的研究方法。首先创建了一个带有坡度的真实地表模型,设置了合理的材料参数(如密度、弹性模量、内摩擦角等),并采用分步骤开挖的方式模拟了煤层开采过程。每个开挖阶段之后进行了求解计算,以观察应力重新分布情况。同时,在关键位置设置了监测点用于记录地表沉降变化。最终通过对结果的数据分析验证了模型的有效性和准确性。 适合人群:从事矿山工程、地质力学以及相关领域的科研工作者和技术人员。 使用场景及目标:适用于需要评估煤矿开采过程中可能出现的地表变形及其对周围环境影响的情况;旨在为优化采矿设计方案提供科学依据。 其他说明:文中提供了具体的UDEC7.0操作指令和参数配置建议,有助于读者快速掌握该软件的基本使用技巧。此外还强调了建模过程中需要注意的问题,如避免不合理参数导致模型失真等。
2025-06-20 17:44:52 708KB
1
本文探讨了基于现场可编程门阵列(FPGA)的卷积神经网络(CNN)设计与实现。在计算机视觉应用中,CNN已经取得了巨大的成功,这部分归因于其固有的并行架构。文章分析了CNN的这种并行性,并基于这种特性,提出了一个并行的CNN前向传播架构。通过实验验证,在操作频率为110MHz的情况下,该架构使得FPGA的峰值运算速度可以达到0.48 GOP/s(Giga Operations Per Second),与ARM Mali-T628 GPU平台相比,其速度能达到23.5倍。 为实现该架构,研究者们需要对CNN的各个组成部分有深入理解,包括卷积层、激活函数(如ReLU)、池化层、全连接层等。CNN由许多层组成,其中卷积层用于特征提取,激活函数为非线性转换层,池化层用于降低特征维度以及防止过拟合,全连接层则用于分类决策。文章中提及的AlexNet网络是深度CNN的一个实例,它在2012年ImageNet大规模视觉识别挑战赛中获得冠军,并大大推动了CNN在深度学习领域的应用。 文中还提到,FPGA作为可编程的硬件加速器,在并行计算方面表现出色。FPGA的可编程性允许设计者为特定的算法优化硬件,从而在特定任务上实现高性能。这种灵活性使得FPGA特别适合于实现并行的CNN前向传播。FPGA能够达到的高运算速度与高效的资源利用率使其成为加速深度学习任务的有力候选者。 在具体实现CNN时,FPGA需要映射到大量的处理单元(PE,Processing Element)。这些PE负责执行CNN中的计算任务,例如矩阵乘法、卷积运算等。文中提到了不同类型的PE和它们在不同尺寸的卷积核上的应用。这些处理元素的高效使用与优化是实现高效CNN的关键。 对于FPGA的使用,研究人员还面临挑战,包括如何有效地映射CNN模型到FPGA硬件资源上,以及如何优化数据流和计算流程以最小化处理时间和功耗。这些问题的解决需要对FPGA的内部结构及其与CNN操作之间的关系有深入理解。 文中提到的实验结果显示,在相同的操作频率下,FPGA实现的CNN架构达到了比ARM Mali-T628 GPU平台高23.5倍的计算速度。这说明,尽管GPU在处理并行任务方面也有很好的性能,但在某些应用中,针对特定算法优化的FPGA解决方案在速度上具有明显优势。 文章中也提到了一些关键技术参数,如CNN的参数数量、存储需求等,这对于评估FPGA实现的成本效益至关重要。例如,CNN模型AlexNet的参数量为6100万,其中前三个卷积层的参数数量分别为27万(C1层)、170万(C2层)和120万(C3层)。这些参数直接关联到FPGA上实现时需要的存储器资源以及带宽需求。 总结来说,本文通过设计和实现基于FPGA的CNN,展示了FPGA在深度学习应用中的巨大潜力,特别是在对实时性和能效有极高要求的场景下。通过充分挖掘CNN并行架构的特性以及FPGA的可编程优势,研究人员可以在某些应用中获得比传统GPU更快的加速效果。随着FPGA技术的不断进步和CNN应用领域的不断拓展,基于FPGA的CNN实现将继续成为研究热点,推动着人工智能技术的发展。
2025-06-20 16:21:20 597KB 研究论文
1
步进电机矢量控制及foc控制策略的Simulink仿真模型研究,步进电机矢量控制Simulink仿真模型中的FOC控制研究与实践,步进电机矢量控制simulink仿真模型,步进电机foc控制 ,关键词:步进电机;矢量控制;Simulink仿真模型;FOC控制;步进电机控制算法。,基于Simulink的步进电机矢量与FOC控制仿真模型研究 步进电机作为一种在工业自动化领域广泛使用的电机,其精准的定位能力和简单的结构使得它在各种精密运动控制系统中扮演着重要角色。矢量控制技术是一种将交流电机的定子电流分解为与转子磁场同步旋转的坐标系下的有功电流和无功电流的技术,通过这种方式可以实现对电机转矩和磁通的独立控制,进而提高电机的动态性能和运行效率。 本文旨在深入研究步进电机矢量控制及基于场向量控制(FOC)策略的Simulink仿真模型。Simulink是一个用于多域仿真和基于模型的设计的软件环境,它允许用户通过拖放模块来创建动态系统的模型,并进行仿真。在步进电机矢量控制的Simulink仿真模型中,FOC控制策略的实现是关键,它通过精确控制电机的电流,确保电机能够按照预期的轨迹和速度运行。 矢量控制和FOC控制策略的结合,不仅能够提升步进电机的性能,还能够优化其启动、运行及制动过程中的能量消耗。通过使用Simulink建立仿真模型,工程师能够对步进电机在不同的控制策略下的行为进行模拟,从而在实际应用之前预知电机的性能表现,这在产品设计和优化中具有重要的指导意义。 在构建Simulink仿真模型时,需要考虑步进电机的电气参数、机械结构参数以及控制策略的算法实现。模型通常会包括电机模型、控制器模型和执行器模型。电机模型主要描述电机的基本电气和机械特性;控制器模型则根据矢量控制原理,生成相应的控制信号;执行器模型负责将控制信号转化为电机可以响应的电压或电流。 本文还将探讨如何在Simulink环境下进行步进电机的仿真测试,包括负载变化、速度变化、加减速控制以及各种扰动对电机性能的影响。通过这些仿真实验,可以验证控制策略的有效性,发现并解决实际应用中可能遇到的问题。 此外,本文还会涉及步进电机控制算法的研究与实践,探讨如何通过算法优化来提高步进电机的控制精度和响应速度。控制算法是实现步进电机高性能控制的关键,它需要考虑电机的非线性特性、参数变化以及外部干扰等因素。 随着科技的不断进步,步进电机的应用领域也在不断扩大,对电机的控制要求也越发严格。因此,对于步进电机矢量控制及FOC控制策略的研究具有重要的现实意义和应用价值。通过Simulink仿真模型的研究,能够为步进电机的设计和应用提供理论支持和技术参考。 关键词:步进电机;矢量控制;Simulink仿真模型;FOC控制;步进电机控制算法。
2025-06-20 15:04:23 5.3MB
1
缝纫机是缝制机械行业最基础的设备,被广泛应用于纺织服装领域,我国目前的缝纫机生产技术成熟度已经较高。由于整机企业可以便利地从市场上获得各类配件,也可以实现高效经济的委托加工,进入缝纫机整机行业门槛相对较低,目前我国缝制机械企业较多。据中国缝制机械协会的不完全统计,我国缝制机械行业现有大小零部件生产企业上千家,从业人员约6 万人,其中,年产值超过500 万元且具有一定规模和影响力的企业的约有200 余家。 1790 年,美国木工托马斯•赛特发首先发明了世界上第一台先打洞、后穿线、缝制皮鞋用的单线链式线迹手摇缝纫机。1841 年,法国裁缝B•蒂莫尼耶发明和制造了机针带钩子的链式线迹缝纫机。胜家公
2025-06-20 13:10:33 2.58MB 智能制造 传统制造
1
针对具有大量卷积神经网络的图像超分辨率算法存在的参数大,计算量大,图像纹理模糊等问题,提出了一种新的算法模型。 改进了经典的卷积神经网络,调整了卷积核大小,并减少了参数; 添加池层以减小尺寸。 降低了计算复杂性,提高了学习率,并减少了培训时间。 迭代反投影算法与卷积神经网络相结合,创建了一个新的算法模型。 实验结果表明,与传统的面部错觉方法相比,该方法具有更好的性能。
2025-06-20 09:26:30 763KB 卷积网络混合算法
1
永磁同步电机PMSM负载状态估计与仿真研究:基于龙伯格观测器与卡尔曼滤波器的矢量控制坐标变换方法及其英文复现报告,结合多种电机仿真与并网技术,涵盖参数优化与并网模型研究。,永磁同步电机PMSM负载状态估计(龙伯格观测器,各种卡尔曼滤波器)矢量控制,坐标变,英文复现,含中文报告,可作为结课作业。 仿真原理图结果对比完全一致。 另外含有各种不同电机仿真包含说明文档(异步电机矢量控制PWM,SVPWM) 光伏并网最大功率跟踪MPPT 遗传算法GA、粒子群PSO、ShenJ网络优化PID参数;模糊PID; 矢量控制人工ShenJ网络ANN双馈风机并网模型,定子侧,电网侧控制,双馈风机并网储能系统以支持一次频率,含有对应的英文文献。 ,关键词: 1. 永磁同步电机PMSM负载状态估计 2. 龙伯格观测器 3. 卡尔曼滤波器 4. 矢量控制 5. 坐标变换 6. 英文复现 7. 中文报告 8. 仿真原理图 9. 电机仿真说明文档 10. 光伏并网 11. MPPT(最大功率跟踪) 12. 遗传算法GA 13. 粒子群PSO 14. ShenJ网络优化PID参数 15. 模糊PID 16. 矢量控
2025-06-19 19:38:04 2.1MB
1
医疗器械软件的研究是一个复杂而严谨的过程,它涉及到众多的技术细节和安全性考量。在文档"医疗器械软件研究模板.docx"中,我们可以看到对这类软件的详细描述,主要包括以下几个关键知识点: 1. **基本信息**:这部分提供了软件的基本标识,如软件名称、型号、版本号、制造商和生产地址,这些信息是软件注册和追踪的基础,对于监管机构和使用者来说至关重要。 2. **安全性级别**:根据 YY/T 0664-2008 标准,医疗器械软件被分为A、B、C三个级别,分别对应无伤害风险、可能造成非严重伤害和可能导致死亡或严重伤害。软件的安全性级别评估基于其预期用途、功能以及失效后果。例如,B级软件可能存在间接伤害风险,如超声设备的误诊可能。 3. **结构功能**:软件的结构和功能描述是理解其工作原理的关键。这包括模块组成、各模块间的关系,以及模块功能的详细说明。这些信息用于分析软件的稳定性、可靠性和潜在风险。 4. **用户界面设计**:用户界面是软件与用户交互的桥梁,良好的GUI设计能提高用户体验并减少误操作。描述用户界面的图形元素、布局和功能有助于评估软件的人机工程学性能。 5. **外部接口**:这部分描述了软件如何与其他系统(如数据库和网络)交互,通常涉及数据传输协议和接口技术。例如,通过SQL SERVER接口进行数据库访问,以及使用无差错传输协议在网络中传输数据。 6. **硬件关系**:硬件配置和连接关系对软件运行至关重要。物理拓扑图展示了软件、通用计算机和医疗器械硬件之间的连接方式,而硬件配置和软件环境则规定了运行软件所需的硬件和软件平台,包括处理器类型、内存大小、操作系统、支持软件等。 7. **运行环境**:详细列出运行软件所需的硬件配置(如处理器、存储器和外设)和软件环境(系统软件、支持软件、必备和选配软件)。同时,网络条件也是重要的组成部分,如网卡类型,这影响到软件的数据交换能力。 医疗器械软件的研究不仅关注软件本身的设计,还深入到硬件集成、用户交互、网络通信等多个层面,以确保软件在实际使用中的安全性和效能。这样的模板提供了全面的框架,指导开发者系统地进行医疗器械软件的研发和评估。
2025-06-19 16:34:43 368KB
1
为了满足聋哑人与正常人交流的需求,研究者们致力于开发能够实现手语到语音转换的系统。这样的系统对于改善聋哑人的社交能力及生活质量具有重要意义。本研究介绍了一种通过深度学习方法实现手语到普通话和藏语语音转换的系统。该系统融合了基于受限玻尔兹曼机(RBM)调节和深度反馈微调的深度学习技术,支持向量机(SVM)对手势的识别分类,以及基于隐马尔可夫模型(HMM)的语音合成技术。 深度学习技术中的受限玻尔兹曼机(RBM)被用来初始化深度模型的权值。RBM是一种无监督学习的神经网络,通常用于特征学习和数据预处理。通过RBM的调节,可以得到适合深度学习模型输入的数据格式,并对模型进行有效的初始化。深度模型包括多个层次,RBM可以调节相邻层之间的权值,从而实现权值的优化。通过反馈微调,系统可以提取出样本的本质特征,更好地处理输入数据。 支持向量机(SVM)是一种监督学习的方法,常用于分类和回归分析。在本研究中,SVM被用于识别和分类30种不同的静态手势。根据手势识别出的语义信息,系统能够获取手势的上下文相关标注。上下文相关标注对于后续的语音合成过程至关重要。 语音合成技术中的隐马尔可夫模型(HMM)是一种统计模型,用于描述系统的动态特性。在语音合成领域,HMM可以用来模拟语音信号的生成过程。研究者们利用说话人自适应训练技术,通过HMM实现了汉藏双语语音合成系统。该系统可以根据手势识别出的上下文相关标注,将手势信息转换成普通话或藏语语音。 实验结果表明,该系统在静态手势识别上达到了93.6%的高识别率。转换成语音后,平均MOS得分为4.0分,这表明语音质量高,接近自然人的发音水平。这一系统的设计和实现对于手语的识别和转换技术来说,具有突破性的进步。 目前,尽管基于计算机视觉的手语识别技术已获得越来越多的关注,但其多集中在单一领域,鲜有研究同时考虑语音输出问题。本研究将语音合成系统与手语识别技术相结合,实现了手语到语音的转换,对于解决残疾人的交流问题具有重要的研究意义。 早期的研究使用数据手套来实现手势到语音的实时转换。但这种方法存在操作不便、设备昂贵和难以推广的问题。相比之下,本研究提出的方法无需穿戴复杂的数据手套,仅通过手势识别即可转换成语音,降低了成本且提高了实用性。 本研究展示了系统框架,并详述了手势识别的具体过程。手势识别过程首先通过RBM进行权值初始化,然后利用深度模型进行反馈微调,最终通过SVM实现静态手势的识别和分类。识别过程基于两位不同测试人打出的30种静态手势,这些手势代表了丰富的语义信息。 研究得到了国家自然科学基金、甘肃省杰出青年基金和甘肃省自然科学基金的支持,这表明了该研究方向的重要性和应用前景。通过相关领域专家和团队的努力,未来有望进一步优化和提升手语到语音转换系统的性能,使之能够更广泛地服务于社会,帮助言语障碍者更好地融入社会生活。
2025-06-19 16:16:14 619KB 研究论文
1
基于VOC格式的铁轨裂纹缺陷检测数据集:2533张高清图片研究资料,基于VOC格式的铁轨裂纹缺陷检测数据集:2533张高清图片研究资料,铁轨裂纹缺陷检测数据集,2533张,voc格式。 裂纹缺陷。 ,核心关键词:铁轨裂纹缺陷检测;数据集;2533张;VOC格式。,铁轨裂纹缺陷检测数据集(2533张VOC格式) 随着现代铁路运输的快速发展和对安全性的高度重视,铁轨的维护和检测成为了保证铁路运输安全的重要环节。铁轨裂纹作为常见的一种轨道缺陷,其检测的准确性和效率直接关系到铁路运行的安全性。为了提升检测技术的精确度和自动化水平,研究者们开发了基于VOC格式的铁轨裂纹缺陷检测数据集,该数据集包含了2533张高清图片,涵盖了多种类型的铁轨裂纹缺陷,为研究和开发铁轨缺陷检测算法提供了丰富的研究资料。 VOC格式,全称为Pascal VOC格式,是计算机视觉领域常用的一种标注数据格式,它是由Pascal Visual Object Classes挑战赛所提出和广泛使用的。VOC格式通常包含图像文件和对应的标注文件,标注文件以XML格式描述了图像中的目标物体的位置和类别等信息。由于其简便性和通用性,VOC格式成为了图像目标检测、分割、识别等任务中的标准格式之一。 铁轨裂纹缺陷检测数据集采用VOC格式,意味着这些数据不仅包含了高清的铁轨图像,还标注了裂纹的具体位置和类型,为研究人员提供了直接可用的训练和测试数据。这些数据的准确标注是实现高效准确缺陷检测的基础,有助于机器学习模型学习识别和定位铁轨裂纹的能力。 在深度学习领域,卷积神经网络(CNN)是处理图像识别任务的常用方法,其在铁轨裂纹缺陷检测中的应用也日益广泛。通过训练CNN模型,可以自动从图片中识别出裂纹的位置和类型,大大提升了检测效率和准确性。此外,由于铁轨裂纹的种类繁多,形态各异,深度学习技术在处理这类复杂问题时显示出独特的优势。 为了更好地理解和利用这些数据,研究人员需要对数据集进行深入解析,了解数据的来源、质量、分布等特征。同时,还需要掌握数据处理的方法,包括数据清洗、增强、划分训练集和测试集等步骤。在深度学习模型训练完成后,还需要对模型进行评估和优化,以确保其在实际应用中的可靠性和稳定性。 基于VOC格式的铁轨裂纹缺陷检测数据集不仅为铁路行业提供了一种高效、精确的检测手段,也为深度学习在特定应用领域的落地提供了实验基础。通过对数据集的深入研究和开发,能够显著提升铁路轨道维护的安全性和效率,减少事故发生的风险。
2025-06-19 15:20:44 467KB 数据结构
1