传统的视频帧间被动取证往往依赖单一特征,而这些特征各自适用于某类视频,对其他视频的检测精度较低。针对这种情况,提出一种融合多特征的视频帧间篡改检测算法。该算法首先计算视频的空间信息和时间信息值并对视频进行分组,接着计算视频帧间连续性VQA特征,然后结合SVM–RFE特征递归消除算法对不同特征排序,最后利用顺序前向选择算法和Adaboost二元分类器对排序好的特征进行筛选与融合。实验结果表明,该算法提高了篡改检测精度。
1
21ic下载_经典的LDA特征选择算法,用matlab实现,包括数据集
2022-05-17 21:18:42 13KB MATLAB LDA
1
用于特征选择任务的简单二元粒子群优化(BPSO),可以选择潜在特征以提高分类精度。
演示了一个示例,该示例说明了如何使用具有分类错误率的BPSO(由KNN计算)作为使用基准数据集进行特征选择问题的适应度函数。 ****************************************************** ****************************************************** **********************************
2022-05-15 11:35:47 121KB matlab
1
摘 要 短时强降水是气象上的常见灾害性天气,准确认识短时强降水的发生规律和科学有效地预报是防灾减灾的关键问题。利用江苏省13个气象观测站历史上短时强降水观测资料,用遗传算法进行特征选择,选定影响短时强降水的对流抑制能、对流有效势能、高空水汽通量场等19个特征为主要因素,将是否短时强降水抽象成二元分类问题。借助机器学习中CART决策树算法进行分类分析,构建便于预报员使用的短时强降水预报规则集。实验部分,随机选择3000条样本进行训练模型,得到适合江苏地区的短时强降水规则集,用剩余的838条数据进行检验,模型的短时强降水预报准确率为88.26%,非强降雨预报准确率为96.81%,较特征选择之前分别提升4.75%和0.70%。
1
维度灾难是机器学习任务中的常见问题,特征选择算法能够从原始数据集中选取出最优特征子集,降低特征维度.提出一种混合式特征选择算法,首先用卡方检验和过滤式方法选择重要特征子集并进行标准化缩放,再用序列后向选择算法(SBS)与支持向量机(SVM)包裹的SBS-SVM算法选择最优特征子集,实现分类性能最大化并有效降低特征数量.实验中,将包裹阶段的SBS-SVM与其他两种算法在3个经典数据集上进行测试,结果表明,SBS-SVM算法在分类性能和泛化能力方面均具有较好的表现.
1
汽车价格预测-高度线性预测项目:一种线性回归模型,用于预测美国市场的汽车价格,以帮助新进入者了解美国汽车行业的重要定价变量。 高度全面的分析,详细说明所有步骤; 数据清理,探索,可视化,特征选择,模型构建,评估和MLR假设有效性
1
这是我们开发的 Matlab 工具箱,用于使用双存档多目标人工蜂群算法进行成本敏感特征选择。” 该程序的详细信息可以在已提交给 Expert Systems with Applications 期刊的论文“Cost-sensitive feature selection using two-archive multi-objective人工蜂群算法”中找到。 在这个工具箱中,main 函数被命名为“main.m”。 在此功能中,您可以通过更改“fly”的值来选择不同的数据集。
2022-05-11 16:39:51 747KB matlab
1
大数据-算法-针对类别不平衡和代价敏感分类问题的特征选择和分类算法.pdf
2022-05-08 14:07:01 5.7MB 算法 big data 分类
大数据-算法-面向不均衡数据和情感词典构建的特征选择方法研究.pdf
2022-05-07 09:08:52 2.3MB 文档资料 big data 算法
matlab复变函数指数函数代码set-mifs 基于集合互信息的Matlab特征选择算法的Matlab实现 介绍 在文献中已经提出了使用互信息(MI)来确定模式识别任务中特征的显着性的思想的许多变体。 但是,它们有其局限性:在变量对之间计算MI不能捕获变量组之间更复杂的交互,而对于大于2的特征空间子集计算MI很快就变得难以计算。 确实,一些作者(参见Kwak&Choi,2002)已经简要概述了基于全集的互信息算法,只是将其从计算上抛在一边,以至于在实践中是不可能的。 此处实现的算法是一种计算组的MI的快速方法,可完全解决计算难点。 算法 该算法基于两个简单的数学事实: 在内射(一对一)函数下,互信息不变,即对于任意变量U和V,对于任何内射函数g,I(U; V)= I(U; g(V)) 内射功能的组合本身就是内射功能。 本质上,此算法将多个注入函数应用于特征空间,以达到可以以其他方式无法实现的效率进行处理的表示形式。 与蛮力方法的指数复杂度形成鲜明对比的是,该算法的总复杂度相对于数据点数量而言是次二次的,相对于特征数量而言是线性的。 下图给出了步骤的实际示例: Lampen(2004)
2022-05-05 16:13:12 292KB 系统开源
1