利用最大最小爬山算法构建肺癌患者的预后模型,指导肺癌预后评价。以SEER(surveillance, epidemiology, and end results)数据库中2008年至2014年期间被确诊为肺癌的患者组成数据集,首先利用卡方检验、Logistic回归分析方法对数据集中的变量进行特征选择;然后,在训练集上利用最大最小爬山算法建立肺癌患者的预后模型,并在测试集上对患者进行5年后生存情况预测;最后,选择Logistic回归、人工神经网络、决策树、支持向量机方法和本研究模型在测试集上进行分类实验对比。最终结果显示本研究模型对肺癌患者5年后生存情况的预测准确率高于其他方法。
1
特征选择的二元差分进化 介绍 此工具箱提供二元差分进化 (BDE) 方法 该Main文件说明了 BDE 如何使用基准数据集解决特征选择问题的示例。 输入 feat :特征向量(实例x特征) label :标签向量(实例x 1) N : 解决方案的数量 max_Iter: 最大迭代次数 CR : 交叉率 更多详情、使用方法,请下载后阅读README.md文件
2022-06-22 12:03:23 62KB matlab
针对微阵列基因表达数据高维小样本、高冗余且高噪声的问题,提出一种基于FCBF特征选择和集成优化学习的分类算法FICS-EKELM。首先使用快速关联过滤方法FCBF滤除部分不相关特征和噪声,找出与类别相关性较高的特征集合;其次,运用抽样技术生成多个样本子集,在每个训练子集上利用改进乌鸦搜索算法同步实现最优特征子集选择和核极限学习机KELM分类器参数优化;然后基于基分类器构建集成分类模型对目标数据进行分类识别;此外运用多核平台多线程并行方式进一步提高算法计算效率。在六组基因数据集上的实验结果表明,该算法不仅能用较少特征基因达到较优的分类效果,并且分类结果显著高于已有和相似方法,是一种有效的高维数据分类方法。
1
具体资源介绍可以看我的博客: 算法笔记(19)自动特征选择及Python代码实现 https://blog.csdn.net/li1873997/article/details/124993371?spm=1001.2014.3001.5502
2022-06-01 14:07:53 25KB python 源码软件 开发语言 机器学习
全国国赛美赛研究生华为杯数学建模竞赛练习使用 使用Python读取数据文件,进行预处理,然后建立模型,对模型进行优化调参,选择最佳的参数,使用Python筛选特征。对以上步骤分别进行可视化。使用多种评价指标评价分类模型。
2022-05-29 12:04:59 780KB python 机器学习 文档资料 开发语言
传统的视频帧间被动取证往往依赖单一特征,而这些特征各自适用于某类视频,对其他视频的检测精度较低。针对这种情况,提出一种融合多特征的视频帧间篡改检测算法。该算法首先计算视频的空间信息和时间信息值并对视频进行分组,接着计算视频帧间连续性VQA特征,然后结合SVM–RFE特征递归消除算法对不同特征排序,最后利用顺序前向选择算法和Adaboost二元分类器对排序好的特征进行筛选与融合。实验结果表明,该算法提高了篡改检测精度。
1
21ic下载_经典的LDA特征选择算法,用matlab实现,包括数据集
2022-05-17 21:18:42 13KB MATLAB LDA
1
用于特征选择任务的简单二元粒子群优化(BPSO),可以选择潜在特征以提高分类精度。
演示了一个示例,该示例说明了如何使用具有分类错误率的BPSO(由KNN计算)作为使用基准数据集进行特征选择问题的适应度函数。 ****************************************************** ****************************************************** **********************************
2022-05-15 11:35:47 121KB matlab
1
摘 要 短时强降水是气象上的常见灾害性天气,准确认识短时强降水的发生规律和科学有效地预报是防灾减灾的关键问题。利用江苏省13个气象观测站历史上短时强降水观测资料,用遗传算法进行特征选择,选定影响短时强降水的对流抑制能、对流有效势能、高空水汽通量场等19个特征为主要因素,将是否短时强降水抽象成二元分类问题。借助机器学习中CART决策树算法进行分类分析,构建便于预报员使用的短时强降水预报规则集。实验部分,随机选择3000条样本进行训练模型,得到适合江苏地区的短时强降水规则集,用剩余的838条数据进行检验,模型的短时强降水预报准确率为88.26%,非强降雨预报准确率为96.81%,较特征选择之前分别提升4.75%和0.70%。
1
维度灾难是机器学习任务中的常见问题,特征选择算法能够从原始数据集中选取出最优特征子集,降低特征维度.提出一种混合式特征选择算法,首先用卡方检验和过滤式方法选择重要特征子集并进行标准化缩放,再用序列后向选择算法(SBS)与支持向量机(SVM)包裹的SBS-SVM算法选择最优特征子集,实现分类性能最大化并有效降低特征数量.实验中,将包裹阶段的SBS-SVM与其他两种算法在3个经典数据集上进行测试,结果表明,SBS-SVM算法在分类性能和泛化能力方面均具有较好的表现.
1