基于深度学习的目标检测技术在目标检测领域有强大的生命力,但是将其用于合成孔径雷达(SAR)图像舰船目标检测时并没有达到预期的效果。提出了一种基于卷积神经网络的SAR图像舰船目标检测算法用来检测多场景下的多尺度舰船目标,在单发多盒探测器检测框架的基础上,使用性能更好的Darknet-53作为特征提取网络,加入更深层次的特征融合网络,生成语义信息更加丰富的新的特征预测图。同时在训练策略上使用了一种新的二分类损失函数来解决训练过程中难易样本失衡的问题。在扩展的公开SAR图像舰船数据集上进行验证实验,实验结果表明,所提方法对复杂场景下不同尺寸的舰船目标的检测展现出了良好的适应性。
2022-03-11 16:04:01 14.29MB 机器视觉 合成孔径 神经网络 舰船目标
1
针对光学相干层析视网膜图像进行人工分类诊断时存在漏检、效率低等问题,提出一种基于深度学习技术构建联合多层特征的卷积神经网络分类算法。首先通过均值漂移和数据归一化算法对视网膜图像进行预处理,并结合损失函数加权算法解决数据不平衡问题;其次使用轻量深度可分离卷积替代普通卷积层,降低模型参数量,采用全局平均池化替换全连接层,增加空间鲁棒性,并联合不同卷积层构建特征融合层,加强层间特征流通;最后使用SoftMax分类器进行图像分类。实验结果表明,该模型在准确率、精确率、召回率上分别达到97%、95%、97%,缩短了识别时长,所提方法在视网膜图像分类诊断中具有良好的性能。
2022-03-09 13:31:56 3.35MB 图像处理 卷积神经 视网膜图 特征融合
1
提出了一种基于EMAPs和SMLR的高光谱图像分类方法。 首先,我们采用EMAPs(扩展形态学多属性谱)算法有效地提取了HSI的空间信息,并结合光谱信息形成了空间光谱特征融合模型。 EMAP可以用多个属性结构替换简单的结构元素,并对其进行级联以获得多个结构的属性特征。 然后,我们利用SMLR(稀疏多项式逻辑回归)进行HSI分类。 SMLR适用于高维和大数据集。 采用基于MLR的多分类器,并采用快速算法学习稀疏的多分类器。 与HSI实验中的其他方法相比,我们的方法提供了出色的结果。
2022-03-08 15:10:26 505KB hyperspectral image; classification; EMAPs;
1
为提高专利文本自动分类的效率和准确度,提出一种基于双通道特征融合的WPOS-GRU(word2vec and part of speech gated recurrent unit)专利文本自动分类方法。首先获取专利摘要文本,并进行清洗和预处理;然后对专利文本进行词向量表示和词性标注,并将专利文本分别映射为word2vec词向量序列和POS词性序列;最后使用两种特征通道训练WPOS-GRU模型,并对模型效果进行实验分析。通过对比传统专利分类方法和单通道专利分类方法,双通道特征融合的WPOS-GRU专利分类方法提高了分类效果。提出的方法节省了大量的人力成本,提高了专利文本分类的准确度,更能满足大量专利文本分类任务自动化高效率的需要。
2022-03-08 10:02:14 1.34MB 专利分类 词性标注 特征融合
1
提出一种融合步态运动中的人体形状信息特征和下肢运动信息特征的步态识别算法:利用边界跟踪算法获取人体轮廓边界线,并采用傅里叶描述子表达人体轮廓特征;依据人体解剖学的知识定位下肢关节点,并提取下肢角度特征;分别对两种特征进行匹配,然后采用特征融合的方法对匹配结果进行处理。实验结果表明,本算法的性能较基于单个特征的步态识别算法有明显的改善。
1
提出了一种基于卷积神经网络和长短期记忆(LSTM)神经网络的深度学习网络结构。采用特征融合的方法,通过卷积网络提取出浅层特征与深层特征并进行联接,对特征通过卷积进行融合,将获得的矢量信息输入LSTM单元。分别使用数据光流信息与红绿蓝信息训练网络,将各网络的结果进行加权融合。实验结果表明,所提模型有效地提高了行为识别精度。
2022-03-04 18:35:40 4.68MB 机器视觉 深度学习 行为识别 卷积神经
1
针对空间通信目标个体识别问题,在射频指纹分析的基础上提出了一种多维信号特征融合提取方法。首先分别在时域、频域和高阶谱域对截获的空间通信目标射频信号提取个体多维信号特征,然后对提取的特征进行融合,并应用支撑矢量机对个体进行分类识别,最后采用实测数据对这种识别方案进行了验证。实验表明,通过多维信号特征融合方法可以有效提取空间通信目标的个体信息,并能获得良好的识别效果。
2022-02-28 17:44:06 304KB 多维特征融合
1
针对现存行人重识别算法不能较好地适应光照、姿态、遮挡等变化的问题, 提出一种基于特征融合与子空间学习的行人重识别算法。该算法对整幅行人图像提取方向梯度(HOG)直方图特征和HSV(Hue,Saturation,Value)直方图特征作为整体特征, 再在滑动窗口内提取色彩命名(CN)特征和两个尺度的尺度不变局部三元模式(SILTP)特征。为了使算法具有更好的尺度不变性, 对原图像进行两次下采样, 再对采样后的图像提取上述特征。提取特征后, 采用核函数分别将原始特征空间转换到非线性空间, 在非线性空间内学习一个子空间, 同时在子空间内学习一个相似性度量函数。在3个公开数据集上进行了实验, 结果表明, 所提算法可以较好地提高重识别率。
2022-02-25 17:37:43 1.64MB 机器视觉 行人重识 特征融合 子空间
1
为解决实际行人重识别系统中识别率低、识别速度慢的问题,从创新和工程应用出发,提出了一种行人重识别算法。对行人图片进行预处理,采用色调、饱和度、亮度(hue,saturation,value,HSV)空间非线性量化的方法构建颜色命名空间,对人体分区域预识别来提高检测效率;对备选目标的整幅图像提取HSV和方向梯度直方图(histogram of oriented gradient,HOG)作为整体特征并在滑动窗口内提取颜色命名(color naming,CN)特征和2个尺度的尺度不变特征(scale invariant local pattern,SILTP),采用本文融合算法得到新的特征;在3个数据集上进行行人重识别,融合的特征在2种度量学习算法的Rank1平均提高了2.4%和3.3%。实验结果表明该算法能够提高重识别精度。
1
基于深度学习与特征融合的植被识别
2022-02-24 11:44:08 1.47MB 研究论文
1