PEM电解槽仿真模型分析,基于Comsol仿真的质子交换膜电解槽多物理场耦合模型:传热、多孔介质流动与极化性能分析,质子交膜(PEM)电解槽comsol仿真模型,耦合电解槽,传热,多孔介质流动物理场,可以计算出电解槽极化曲线,气体摩尔浓度分布,温度分布,压力分布等。 ,关键词:质子交换膜电解槽; comsol仿真模型; 耦合电解槽; 传热; 多孔介质; 物理场; 极化曲线; 气体摩尔浓度分布; 温度分布; 压力分布;,质子交换膜电解槽COMSOL仿真模型:多物理场耦合分析 在研究质子交换膜(PEM)电解槽的仿真模型分析时,Comsol仿真软件被广泛应用于建立和分析多物理场耦合模型。多物理场耦合指的是在同一个仿真过程中考虑多种物理现象的相互作用,例如在PEM电解槽的运行中,涉及到的物理现象包括传热、多孔介质流动、电化学反应等。这些现象相互作用,共同影响电解槽的性能。 传热是电解槽中非常关键的物理过程之一,涉及到热量在电解槽内的生成、传递和散失。温度分布对电解槽的效率和稳定性有显著影响。在仿真模型中,可以精确模拟出温度如何在电解槽中分布,并预测其对其他物理过程的影响。 多孔介质流动通常指的是电解反应过程中,气体和液体在多孔电极和膜之间的流动行为。这些流动不仅关系到反应物质的传输效率,还影响到电解槽内部的浓度分布和反应速率。仿真模型可以帮助设计出更高效的流动结构,以提升电解槽的整体性能。 极化性能分析关注的是电解过程中电极电势的变化,这直接影响到电解槽的功率输出。通过Comsol仿真模型,可以计算出电解槽的极化曲线,从而分析其在不同操作条件下的性能表现。 气体摩尔浓度分布是评估电解槽反应效率的另一个重要参数。气体在电解槽中的分布不均匀会增加反应的局部电阻,导致效率下降。仿真模型可以直观地显示出气体浓度分布情况,帮助优化设计。 压力分布对于理解流体在电解槽内的行为同样重要。压力的变化会直接影响流体流动的速率和方向,进而影响电解槽的性能。仿真模型能够提供压力分布的详细信息,为工程优化提供依据。 关键词:质子交换膜电解槽、Comsol仿真模型、耦合电解槽、传热、多孔介质、物理场、极化曲线、气体摩尔浓度分布、温度分布、压力分布。 通过这些仿真模型,研究人员能够深入理解PEM电解槽内部复杂的工作机制,并为改进电解槽的设计提供科学依据。这些仿真工作对于推动电解水制氢技术的发展具有重要意义,能够为未来高效、稳定、经济的绿色能源系统的设计和优化奠定基础。
2025-07-04 09:54:51 1.55MB rpc
1
在Android平台上,开发移动应用时有时需要获取设备的物理MAC(Media Access Control)地址,这在设备定位、网络连接管理或者其他需要唯一标识设备的场景中非常有用。MAC地址是网络接口控制器(NIC)的硬件地址,它在通信过程中用于唯一识别网络节点。然而,由于隐私保护原因,Android系统在不同版本中对直接获取MAC地址做了限制。 在“Android 移动端获取设备MAC Demo”中,我们将探讨如何在Android系统中,特别是在Android 8.0之前,有效地获取和使用MAC地址。以下是一些关键知识点: 1. **Android权限**:在Android 6.0(API级别23)及以上版本,获取MAC地址需要申请`ACCESS_WIFI_STATE`权限。在AndroidManifest.xml文件中添加如下代码: ```xml ``` 2. **WiFiManager**:Android提供了一个名为`WifiManager`的系统服务,可以用来获取WiFi相关的信息,包括MAC地址。通过`Context.getSystemService(Context.WIFI_SERVICE)`可以获取到`WifiManager`的实例。 3. **获取MAC地址**:在Android 8.0之前,可以直接通过`WifiManager`的`getMacAddress()`方法获取MAC地址。示例代码如下: ```java WifiManager wifiManager = (WifiManager) getSystemService(WIFI_SERVICE); String macAddress = wifiManager.getConnectionInfo().getMacAddress(); ``` 4. **Android 8.0及之后的限制**:从Android 8.0(API级别26)开始,系统返回的`getMacAddress()`会是`null`或一个随机值,因为出于隐私考虑,系统不再允许应用程序直接访问真实的MAC地址。开发者需要寻找替代方案,如使用`BluetoothAdapter`的`getAddress()`来获取蓝牙MAC地址,但请注意蓝牙MAC地址并不能完全代替WiFi MAC。 5. **模拟MAC地址**:在无法直接获取MAC地址的情况下,可以考虑使用设备的IMEI(国际移动设备识别码)或其他系统唯一标识符作为替代。不过,IMEI也需要`READ_PHONE_STATE`权限,并且在某些设备上可能不可用。 6. **WIFI状态检查**:在获取MAC地址之前,可能需要确保WiFi处于开启状态。可以通过`WifiManager.isWifiEnabled()`来检查,如果关闭则可以使用`WifiManager.setWifiEnabled(true)`尝试开启。 7. **处理异常情况**:考虑到权限问题和Android版本差异,代码中应该包含异常处理和适配逻辑,确保在各种情况下程序都能稳定运行。 在“GainMac”这个项目中,很可能包含了实现上述功能的源代码示例,你可以通过阅读和学习这些代码来了解如何在实际项目中应用这些知识点。通过这个Demo,开发者可以理解如何在Android环境下优雅地处理MAC地址的获取和使用,以及在新版本系统中的适应性调整。
2025-07-03 11:22:16 12.2MB Android 通用获取mac 获取mac 物理mac
1
文档支持目录章节跳转同时还支持阅读器左侧大纲显示和章节快速定位,文档内容完整、条理清晰。文档内所有文字、图表、函数、目录等元素均显示正常,无任何异常情况,敬请您放心查阅与使用。文档仅供学习参考,请勿用作商业用途。 你是否渴望高效解决复杂的数学计算、数据分析难题?MATLAB 就是你的得力助手!作为一款强大的技术计算软件,MATLAB 集数值分析、矩阵运算、信号处理等多功能于一身,广泛应用于工程、科学研究等众多领域。 其简洁直观的编程环境,让代码编写如同行云流水。丰富的函数库和工具箱,为你节省大量时间和精力。无论是新手入门,还是资深专家,都能借助 MATLAB 挖掘数据背后的价值,创新科技成果。别再犹豫,拥抱 MATLAB,开启你的科技探索之旅!
2025-06-23 22:02:50 4.18MB matlab
1
《凝聚态物理》是物理学的一个重要分支,主要研究固体和液体的宏观性质,涉及电子、原子、分子在凝聚态下的行为。本套资料包含了从第一章到第十八章的完整课程内容,是学习和理解凝聚态物理的理想参考资料。下面将对每一章的核心知识点进行详细阐述。 第一章:凝聚态物理导论 这一章主要介绍了凝聚态物理的研究对象和范围,包括固体的分类(晶体、非晶态、准晶等)以及基本特性,如结构、力学、热学、电学和光学性质。同时,会引入一些基础概念,如晶格、能带理论和费米面等。 第二章:晶格动力学 本章深入探讨固体中的振动模式——声子,它是固体热传导和光学性质的关键。通过晶格振动的量子化,解释了德拜模型和布里渊区的概念,为理解固体的热容、声波传播和超导现象奠定了基础。 第三章:电子在晶体中的行为 这里主要讲解能带理论,包括电子的周期性势场中的运动、电子的波函数和能带结构。能带理论是理解和预测半导体、绝缘体和金属特性的关键。 第四章:固体的电子结构 本章讨论了电子在固体中的能级分布,如满带、空带和禁带的概念,以及电子占据能级的统计规律。同时,会介绍电子亲和力、功函数和电荷迁移率等相关概念。 第五章至第十二章:磁学、电学与光学性质 这些章节详细分析了固体的磁性、电导率、介电常数和光学吸收等性质。涵盖了霍尔效应、超导电性、半导体物理、光电效应、光电导、光伏效应等重要现象,以及相关的测量方法和技术。 第十三章:超导物理 超导现象是凝聚态物理的一大亮点。本章会讲解BCS理论,即超导现象的微观机制,以及临界温度、迈斯纳效应和约瑟夫森效应等超导的基本特征。 第十四章:纳米材料与量子效应 随着科技的发展,纳米尺度的材料成为研究热点。这一章讨论了纳米材料的制备、表征方法,以及量子尺寸效应、表面效应和量子限域效应等。 第十五章至第十八章:新型凝聚态系统 这部分内容可能涵盖了高温超导、拓扑绝缘体、量子霍尔效应、自旋电子学等前沿领域,揭示了新的物理现象和潜在应用。 通过这十八章的学习,读者将对凝聚态物理有全面而深入的理解,能够掌握固体物理的基本原理,并能应用于实际的科研和工程问题中。这份资料详尽且系统,对于学生和研究人员来说是一份宝贵的参考资料。
2025-06-23 15:58:02 31.01MB 课程资源 凝聚态物理
1
文档支持目录章节跳转同时还支持阅读器左侧大纲显示和章节快速定位,文档内容完整、条理清晰。文档内所有文字、图表、函数、目录等元素均显示正常,无任何异常情况,敬请您放心查阅与使用。文档仅供学习参考,请勿用作商业用途。 你是否渴望高效解决复杂的数学计算、数据分析难题?MATLAB 就是你的得力助手!作为一款强大的技术计算软件,MATLAB 集数值分析、矩阵运算、信号处理等多功能于一身,广泛应用于工程、科学研究等众多领域。 其简洁直观的编程环境,让代码编写如同行云流水。丰富的函数库和工具箱,为你节省大量时间和精力。无论是新手入门,还是资深专家,都能借助 MATLAB 挖掘数据背后的价值,创新科技成果。别再犹豫,拥抱 MATLAB,开启你的科技探索之旅!
2025-06-23 10:52:41 4.44MB matlab
1
【原子物理学】是物理学的一个重要分支,主要研究原子的结构、性质以及它们与电磁辐射的相互作用。在《原子物理学》部分习题答案(杨福家)第四版中,涉及了多个关键概念和计算。 1. **能级与频率的关系**: 依据波尔理论,原子中的电子在不同能级间跃迁会发出或吸收特定频率的光。光的频率(ν)和波长(λ)可以通过以下公式计算: \[ ν = \frac{E_n - E_m}{h} \] \[ λ = \frac{c}{ν} \] 其中,E_n 和 E_m 分别是电子跃迁前后的能量,c 是光速,h 是普朗克常数。习题中的计算展示了如何利用这些公式来求解具体问题。 2. **类氢原子**: 类氢原子是指具有一个电子的离子,如 He+(Z=2) 和 Li++(Z=3)。这些离子的能级结构与氢原子相似,可以用里德伯公式来描述,其中 Z 表示原子的核电荷数。题目中给出了 r(轨道半径)和 v(速度)的计算,以及结合能和激发能的计算。 3. **结合能与激发能**: 结合能是电子在基态时与原子核结合所需能量的负值,表示为 E_b。激发能是从基态跃迁到更高能级所需的能量,表示为 E_{exc}。结合能和激发能的计算涉及量子力学中的波恩-奥本海默近似和库仑势能。 4. **光谱选择定则**: 在原子光谱中,某些特定的跃迁是允许的,称为选择定则。例如,2-32-72-82-11选择定则描述了电子在不同能级间的跃迁。这些规则是基于电子角动量的量子数变化。 5. **钠原子的共振线**: 钠原子的共振线是其特征谱线之一,对应于电子从某一能级跃迁到基态时释放的光。波长可以通过波尔理论计算得到,例如题目中给出了钠原子的共振线波长。 6. **晶格常数与晶面间距**: 在固态物理中,晶格常数(a)和晶面间距(d)是描述晶体结构的重要参数。3-3部分涉及到通过布拉格定律来计算特定晶面的反射角。 7. **不确定度原理**: 海森堡的不确定度原理指出,粒子位置(Δx)和动量(Δp)的不确定性之间存在基本限制,即 ΔxΔp ≥ ħ/2。在3-7的讨论中,利用这个原理估算电子的最小动能,并分析了这个动能对原子结构的影响。 8. **电子束缚能**: 在3-8部分,电子被束缚在原子核附近时,其最小动能可以通过不确定度关系来估算。这是量子力学中理解原子稳定性的重要方面。 9. **波函数与概率分布**: 3-11和3-12探讨了氢原子在不同能级时的波函数,比如1S和2P态。波函数可以给出电子在空间中出现的概率分布,以及电荷密度的极大值条件。 10. **量子数与能级**: 4-14和4-3涉及了更高的量子数,如l和j,它们定义了多电子原子的能级结构。玻尔磁子和朗德因子与原子在磁场中的行为有关,影响原子的光谱。 这部分习题涵盖了原子物理学的基础概念,包括能级、跃迁、光谱、固体物理的晶格结构,以及量子力学中的波函数和不确定性原理等。通过解决这些问题,学生可以深入理解原子的微观世界。
2025-06-22 16:07:48 613KB 原子物理学
1
《原子物理课件楮圣麟版》是一份深入讲解原子物理学的教育资源,主要适用于学习者了解和掌握原子物理学的基础知识。这份课件详尽地介绍了原子物理学的发展历程和其在不同领域的应用,以及原子的基本性质,如质量和大小,并进一步探讨了原子的核式结构。 原子物理学的发展历程始于17世纪,牛顿对光学的研究奠定了基础,接着道尔顿在19世纪提出了原子理论。随后,伦琴发现了X射线,贝克勒尔发现了放射性,汤姆逊揭示了电子的存在,普朗克引入了量子概念,玻尔则构建了著名的原子模型。这些科学家的贡献为原子物理学的发展铺平了道路。原子物理学在化学、现代天文学、结晶学、生物科学以及材料科学等领域都发挥着重要作用,是理解物质本质和推动科技进步的关键学科。 课件中的第一章重点讨论了原子的基本状况。原子的质量分为相对值(原子量)和绝对值,通常以原子质量单位(u)表示,与阿伏伽德罗常数关联。原子大小的估算则涉及原子质量密度和原子半径,通过计算可得出原子占据的空间大约在1Å量级。这些信息揭示了原子内部结构的特点,即原子由带负电的电子和带正电的核组成,电子质量远小于原子总质量,而原子的大部分质量集中在原子核中。 第二章深入探讨了原子的核式结构,通过α粒子散射实验来证明这一理论。汤姆逊的模型假设原子是均匀分布的,但无法解释大角度散射现象。而卢瑟福的模型提出原子由中心的原子核和环绕其周围的电子构成,可以成功解释实验观察到的大角度散射。库仑散射公式进一步描述了α粒子与原子核的相互作用,展示了瞄准距离与散射角之间的关系,证实了原子核的存在及其对α粒子的强大影响。 课件内容还包括对散射实验的理论分析,如粒子的运动轨迹、角动量守恒等物理原理,这有助于学生深入理解原子结构的微观世界。 《原子物理课件楮圣麟版》是一份全面介绍原子物理学的宝贵资料,不仅涵盖了历史发展和基本概念,还深入剖析了原子结构的关键实验和理论。对于想要深入了解原子物理的学生或研究者来说,这是一个不可多得的学习资源。
2025-06-20 18:02:57 8.89MB 原子物理
1
### LTE物理层基本概念 #### 一、信道带宽 在LTE系统中,信道带宽是指系统能够使用的频率范围。LTE支持多种信道带宽配置,包括1.4MHz、3.0MHz、5MHz、10MHz、15MHz以及20MHz等。这些不同的带宽选项为运营商提供了灵活的选择,可以根据实际需求和频谱资源来调整网络的容量和服务质量。 - **下行信道带宽**:下行信道带宽的信息通过主广播信息(MIB)进行广播,确保用户设备(UE)能够在接入网络时快速了解该信息。 - **上行信道带宽**:上行信道带宽则通过系统信息(SIB)进行广播,以便UE可以根据这些信息来配置其上行链路传输。 - **信道带宽与传输带宽配置**:两者之间存在一定的对应关系。例如,当信道带宽为20MHz时,对应的传输带宽配置(RB数目)为100个资源块(Resource Block)。这种配置使得系统能够根据信道带宽的变化灵活调整资源分配。 #### 二、多址技术 LTE采用两种主要的多址技术:**下行OFDM** 和 **上行SC-FDMA**。 - **下行OFDM**:正交频分多路复用(Orthogonal Frequency Division Multiplexing, OFDM)是一种高效的数据传输方案,它将高速的数据流分解成多个并行的低速数据流,在多个子载波上同时传输。这种方式提高了频谱效率,减少了干扰,并且能够适应复杂的无线传播环境。 - **上行SC-FDMA**:单载波频分多址(Single-Carrier Frequency Division Multiple Access, SC-FDMA)是在上行链路中采用的技术,其特点是峰均功率比(PAPR)较低,这有助于减少终端发射机的功耗和成本。 #### 三、双工方式与帧结构 - **FDD (Frequency Division Duplex)**:FDD使用不同的频率范围来区分上行链路和下行链路,这意味着上行和下行可以在同一时间内工作。 - **TDD (Time Division Duplex)**:TDD则在同一频率范围内交替使用时间来区分上行和下行链路。TDD更适合于非对称业务,因为它可以根据实际需求动态调整上行和下行的时间比例。 - **H-FDD (Half-Duplex FDD)**:这是一种特殊形式的FDD,其中终端不允许同时发送和接收信号,这对于降低终端的成本和功耗是有益的。 #### 四、物理资源概念 物理资源是LTE物理层中用于传输数据的基本单位。主要包括: - **资源块(Resource Block, RB)**:资源块是时频资源的基本单位,包含了一系列连续的子载波和时隙。 - **子帧(Subframe)**:子帧是物理层传输的一个基本时间单位,由两个时隙组成,每个时隙包含7个OFDM符号(或6个对于特殊子帧)。 #### 五、物理信道 物理信道是指在物理层上承载特定类型信息的信道,例如: - **PDSCH (Physical Downlink Shared Channel)**:用于承载下行链路共享数据。 - **PUSCH (Physical Uplink Shared Channel)**:用于承载上行链路共享数据。 - **PDCCH (Physical Downlink Control Channel)**:用于承载下行链路控制信息。 - **PUCCH (Physical Uplink Control Channel)**:用于承载上行链路控制信息。 #### 六、物理信号 物理信号包括同步信号、参考信号等,它们对于UE和基站之间的同步和信道估计至关重要。 - **同步信号**:用于UE进行初始小区搜索和同步。 - **参考信号**:用于信道估计,从而改善数据传输性能。 #### 七、物理层过程 物理层过程包括随机接入过程、同步过程等,这些过程对于UE成功接入网络至关重要。 - **随机接入过程**:UE通过发送随机接入前导码(Preamble)来发起连接建立过程。 - **同步过程**:包括时间和频率同步,确保UE能够正确接收和解调信号。 LTE物理层的基本概念涵盖了从信道带宽到物理层过程等多个方面,这些概念共同构成了LTE系统的基础架构和技术框架,为实现高效、可靠的无线通信服务提供了技术支持。
2025-06-09 11:27:04 778KB LTE
1
### 华为LTE物理层关键技术解析 #### 一、引言 华为作为全球领先的通信设备制造商之一,在4G LTE技术领域拥有深厚的技术积累与创新能力。本文将基于华为提供的LTE物理层介绍资料,深入剖析LTE物理层的关键技术及其设计原理。 #### 二、LTE物理层关键技术详解 ##### 2.1 OFDM技术 **背景与意义** OFDM(Orthogonal Frequency Division Multiplexing, 正交频分复用)是一种高效的数字调制技术,广泛应用于包括LTE在内的现代通信系统中。其核心优势在于能够有效抵抗多径传播带来的符号间干扰(ISI),提高频谱利用率,并简化了接收机的设计。 **工作原理** 传统的单载波系统(如GSM)在数据速率较低时,可以利用简单的均衡器来消除ISI的影响;但随着数据速率的提升,单载波系统的性能会受到显著限制。相比之下,OFDM通过将高速的串行数据流转换为多个低速并行数据流,分别调制到不同的载波上。这样,每个载波上的符号宽度增加,ISI效应减弱,从而提高了传输的可靠性和效率。 **OFDM系统实现** - **发射机结构**:原始数据首先经过串并转换(S/P),然后分配给各个子载波进行调制,最后通过IFFT(Inverse Fast Fourier Transform, 快速傅里叶逆变换)将频域信号转换为时域信号,再添加循环前缀(Cyclic Prefix, CP)以进一步减少ISI。 - **接收机结构**:接收端去除CP后,通过FFT(Fast Fourier Transform, 快速傅里叶变换)将信号恢复到频域,随后进行解调、并串转换(P/S)等操作,最终恢复出原始数据。 **优点总结** - **高频率效率**:OFDM能够充分利用频谱资源,提高频谱利用率。 - **抗多径能力**:通过增加符号时间长度,OFDM有效地对抗多径传播导致的ISI。 - **灵活的带宽配置**:可以根据实际需求调整子载波的数量和带宽,适应不同的应用场景。 - **易于实现**:利用FFT/IFFT算法进行信号处理,简化了硬件设计。 ##### 2.2 MIMO技术 **概念与原理** MIMO(Multiple-Input Multiple-Output, 多输入多输出)是指在发送端和接收端同时使用多个天线进行数据传输的技术。MIMO通过空间分集、空间复用等方式提高链路容量和传输质量。 **空间分集** 空间分集是在不同的空间位置上放置多个天线,利用信号的多径传播特性,即使某一路径受阻也能通过其他路径保持通信的连续性,从而提高通信的可靠性和稳定性。 **空间复用** 空间复用则是指在同一时刻利用多根天线并行传输多路数据流,通过增加数据吞吐量来提高传输效率。 **MIMO在LTE中的应用** LTE系统充分利用MIMO技术的优势,不仅提高了无线通信系统的容量,还增强了系统的鲁棒性。具体来说,LTE支持多种MIMO配置,包括: - **1x2 MIMO**:适用于下行链路,通过两个接收天线来提高接收质量。 - **2x2 MIMO**:用于双向通信,通过两个发送和两个接收天线实现空间复用,大幅提高数据传输速率。 - **4x4 MIMO**:更高级别的配置,提供更高的数据传输速率和系统容量。 #### 三、LTE物理信道设计概述 **目的与作用** 物理信道设计旨在定义LTE系统中各种物理信道的功能、参数和格式,确保数据在无线接口上的高效传输。这些物理信道包括但不限于控制信道、业务信道等,它们承载着不同类型的业务数据和服务信息。 **设计原则** - **灵活性**:物理信道设计需支持多种业务类型和服务质量(QoS)要求。 - **可靠性**:确保数据传输的准确性和完整性,降低误码率。 - **高效性**:充分利用有限的频谱资源,提高系统容量。 **主要物理信道** - **PDCCH (Physical Downlink Control Channel)**:用于承载下行链路控制信息,如资源分配、HARQ信息等。 - **PDSCH (Physical Downlink Shared Channel)**:承载用户数据和高层信令。 - **PUSCH (Physical Uplink Shared Channel)**:用于上行链路数据传输。 - **PUCCH (Physical Uplink Control Channel)**:承载上行链路控制信息。 #### 四、物理层基本处理流程概述 **流程概述** 物理层的基本处理流程包括了从高层数据到物理信号的映射过程,主要包括以下几个步骤: 1. **高层数据处理**:包括编码、交织、加密等操作,确保数据的安全性和可靠性。 2. **调制**:将处理后的数据转换为适合无线传输的信号形式。 3. **资源分配**:根据系统资源情况,为不同用户分配合适的无线资源。 4. **发射机处理**:包括加CP、IFFT等操作,将信号转换为适合无线传输的形式。 5. **接收机处理**:包括FFT、解调、解码等操作,恢复出原始数据。 **流程细节** - **高层数据处理**:在发送端,原始数据首先经过编码处理,比如Turbo编码或卷积编码,以提高数据传输的可靠性;接着进行交织处理,以分散突发错误的影响;最后进行加密,保障数据安全。 - **调制**:根据所选择的调制方式(如QPSK、16QAM、64QAM等),将处理后的数据转换为特定的符号序列。 - **资源分配**:根据无线环境条件和系统资源状况,合理分配子载波、时隙等资源,优化网络性能。 - **发射机处理**:将调制后的信号通过IFFT转换为时域信号,添加CP以减少ISI,最后通过射频电路发射出去。 - **接收机处理**:在接收端,去除CP后通过FFT将信号恢复到频域,接着进行解调、解码等操作,恢复出原始数据。 LTE物理层的关键技术——OFDM和MIMO,以及物理信道的设计原理与流程,共同构建了一个高效、可靠的无线通信系统。通过对这些核心技术的理解和掌握,有助于我们更好地理解和应用LTE技术。
2025-06-09 11:22:34 2.74MB lte
1
LTE物理层过程,LTE物理层信道与信号,LTE物理层概述
2025-06-09 11:20:44 4.44MB LTE物理层
1