神经网络(Graph Neural Networks, GNN)是深度学习领域中的一个重要分支,它专注于处理非欧几里得数据,如图结构数据。在本数据集“PTC-FM”中,我们聚焦于小分子的图表示和二分类任务。这个数据集包含349个图,每个图代表一个化学分子,其结构信息被抽象成节点和边的形式。平均每个图有14个节点,这通常对应于分子中的原子,而平均14条边则代表原子间的化学键。 图神经网络的工作原理是通过不断迭代地传播和聚合邻居节点的信息,从而对每个节点进行特征学习。在每一轮迭代(也称为消息传递层)中,每个节点的特征向量会与相邻节点的特征向量进行交互,然后更新自身的状态。这个过程可以理解为在图中传播信息,直到达到一个稳定状态或达到预设的迭代次数。通过对图中所有节点特征的汇总,可以得到整个图的全局表示,用于执行分类或其他下游任务。 对于小分子分析,GNN特别适合,因为它能捕获分子的拓扑结构和化学键信息。在PTC-FM数据集中,GNN模型可以学习识别分子结构与特定属性(例如,是否有毒性)之间的关系。二分类任务意味着模型需要区分两类不同的分子,比如有毒和无毒。 为了构建这样的模型,首先需要将分子结构数据转化为图的形式,其中节点代表原子,边代表化学键。然后,每个节点可以有初始特征,如原子类型,而边可能也有附加信息,如键的类型。在训练过程中,GNN模型会学习这些特征并利用它们进行分类。 在实际应用中,GNN模型的构建通常涉及以下步骤: 1. **数据预处理**:将分子结构数据转换为图表示,包括节点和边的初始化。 2. **定义GNN层**:设计消息传递函数和节点/图聚合函数。 3. **模型架构**:搭建多层GNN网络,并可能结合其他深度学习组件如全连接层。 4. **训练与优化**:通过反向传播算法更新模型参数,以最小化损失函数。 5. **评估与验证**:使用交叉验证或者独立测试集评估模型性能。 在这个数据集上,你可以尝试多种GNN变体,如Graph Convolutional Network (GCN)、Graph Attention Network (GAT) 或 Message Passing Neural Network (MPNN),并比较它们的性能。此外,可以考虑集成其他技术,如节点嵌入、图池化或图自编码器,以增强模型的表达能力和泛化能力。 PTC-FM数据集为研究和开发图神经网络提供了宝贵的资源,有助于推进化学信息学、药物发现和机器学习在物质科学领域的应用。通过深入理解和应用GNN,我们可以更好地理解和预测分子的性质,这对于新药研发、材料科学等领域具有重大意义。
1
【毕业设计:基于图神经网络的异构图表示学习和推荐算法研究】 本毕业设计主要探讨了图神经网络(GNN)在异构图表示学习和推荐系统中的应用。图神经网络是一种强大的机器学习模型,它能处理非欧几里得数据结构,尤其适用于社交网络、知识图谱和复杂网络等领域的分析。在异构图中,不同类型的节点和边共同构成了复杂的网络结构,这为理解和挖掘数据间的关系提供了新的视角。 一、图神经网络基础 1. 图神经网络的定义:GNN 是一种对图数据进行深度学习的方法,通过消息传递机制在节点之间传播信息,从而学习节点的嵌入表示。 2. 模型结构:GNN 包含多层神经网络,每层通过聚合邻居节点的信息更新当前节点的状态,直到收敛或达到预设层数。 3. 消息传递:GNN 的核心是消息传递函数,它负责将一个节点的特征向量传递给其相邻节点,同时接收来自邻居节点的信息。 二、异构图表示学习 1. 异构图的特性:异构图包含多种类型节点和边,每种类型都有不同的属性和交互模式。 2. 表示学习挑战:如何在异构环境中有效地捕获不同类型节点和边的特征并进行统一表示,是异构图学习的关键。 3. GNN 在异构图中的应用:通过设计适应异构图的GNN模型,如Heterogeneous Graph Neural Network (HetGNN)、Metapath2Vec等,可以处理节点和边的多样性,捕捉丰富的语义信息。 三、推荐算法 1. 推荐系统概述:推荐系统旨在预测用户可能感兴趣的内容,通过分析用户历史行为、兴趣偏好等数据来实现个性化推荐。 2. 基于图的推荐:将用户、物品等视为图中的节点,通过GNN学习节点间的关系,进而预测用户可能的评分或点击概率。 3. 异构图在推荐中的优势:能够捕获用户-物品、用户-用户、物品-物品等多类型关系,提升推荐的准确性和多样性。 四、项目实现 本设计提供了一个完整的实现框架,包括数据预处理、模型训练、评估和推荐结果生成等环节。源码经过严格测试,确保可直接运行,为其他研究者或学生提供了参考和实践平台。其中,"demo"可能是演示代码或样例数据,帮助理解模型的运行流程和效果。 五、互动支持 作者承诺对下载使用过程中遇到的问题及时解答,保证良好的使用体验。这种互动交流有助于深化对项目的理解,提高问题解决能力。 本毕业设计深入研究了GNN在异构图表示学习和推荐算法中的应用,不仅涵盖了理论知识,还提供了实际操作的代码,对于学习和研究图神经网络在推荐系统中的应用具有重要价值。
2024-07-28 09:14:58 579KB 毕业设计
1
卷积神经网络(Convolutional Neural Networks,简称CNN)在计算机视觉领域扮演着核心角色,尤其是在图像分类任务中。CIFAR-10是一个广泛使用的数据集,它包含60,000张32x32像素的小型彩色图像,分为10个类别,每个类别有6,000张图片。这个数据集被广泛用于训练和评估各种CNN模型的性能。 ResNet,全称为残差网络(Residual Network),是由Microsoft Research团队在2015年提出的一种深度学习架构。其主要解决了深度神经网络在训练过程中可能出现的梯度消失或梯度爆炸问题,使得网络可以轻易构建到数百层甚至更深。ResNet的核心思想是通过引入“残差块”(Residual Block)来学习网络中的“残差”,即输入与输出之间的差异,而不是直接学习整个网络的输出。 在PyTorch中实现CIFAR-10的10分类任务,首先需要加载CIFAR-10数据集,对数据进行预处理,包括归一化、数据增强等步骤,以提高模型的泛化能力。接着,定义ResNet模型结构,通常会使用不同深度的版本,如ResNet-18、ResNet-34、ResNet-50等,根据计算资源和任务需求选择合适的模型。每个ResNet残差块内部包含了两个卷积层,通过短路连接(Shortcut Connection)将输入直接传递到输出,使得信息可以直接跨过多层传播。 训练过程中,使用优化器如SGD(Stochastic Gradient Descent)或Adam,设置学习率、权重衰减等超参数,以及损失函数,如交叉熵损失(Cross-Entropy Loss)。训练过程中还需要注意模型的验证和调参,例如采用早停策略(Early Stopping)来防止过拟合,或者使用学习率衰减策略来提高模型的最终性能。 在完成训练后,评估模型在测试集上的性能,包括准确率、混淆矩阵等指标,以了解模型对各个类别的识别情况。此外,可以进一步分析模型的可视化,如使用Grad-CAM等方法理解模型对图像特征的注意力分布。 "CIFAR与ResNet卷积神经网络实战"这个资源涵盖了深度学习的基础知识,包括卷积神经网络、数据集的使用、模型设计、模型训练以及性能评估等方面,对于初学者来说是一个很好的实践项目,有助于深入理解深度学习在计算机视觉领域的应用。通过实际操作,不仅可以掌握PyTorch框架,还能了解如何解决深度学习中常见的问题,提升模型的性能。
2024-07-27 15:15:13 137.51MB resnet cifar10
1
点选识别是计算机视觉领域中的一个关键任务,它通常涉及到图像中的特定目标检测与分类。在本项目中,我们利用了孪生神经网络(Siamese Network)这一强大的机器学习模型来实现点选识别。孪生神经网络因其结构对称而得名,它主要由两个共享权重的神经网络分支构成,常用于比较输入样本对之间的相似性。 孪生神经网络的核心思想是通过对比学习,使网络能够理解两个相似样本的特征表示应该接近,而不同样本的特征表示应该相距较远。在点选识别的应用中,我们可以训练网络以区分哪些图像区域包含目标点,哪些不包含。这在例如交互式界面设计、点击预测、图像标注等领域具有广泛的应用。 孪生网络的训练通常包括以下步骤: 1. **数据预处理**:我们需要准备一个包含点选信息的图像数据集。这些图像可以是用户在特定位置点击后的屏幕截图,每个图像都带有对应的点选标签。 2. **构建网络结构**:孪生网络的两个分支通常采用相同的卷积神经网络(CNN)结构,如VGG或ResNet,用于提取图像特征。这两个分支的权重共享,确保它们对所有输入执行相同的特征提取过程。 3. **相似度度量**:接下来,两个分支的输出特征向量会被送入一个距离度量函数,如欧氏距离或余弦相似度,以计算样本对之间的相似性。 4. **损失函数**:为了训练网络,我们选择一对相似和不相似的样本对,并定义一个损失函数,如 Contrastive Loss 或 Margin Loss,来衡量预测的相似度是否符合实际标签。 5. **优化与训练**:使用反向传播算法更新网络权重,使得相似样本对的损失值最小,而不相似样本对的损失值最大。 6. **评估与应用**:经过训练后,孪生网络可用于实时的点选识别,通过计算新图像与已知点选模板的特征距离,判断该点是否为用户可能的点击位置。 在实际应用中,孪生网络可以与其他技术结合,如注意力机制或者置信度阈值设定,以提高识别的准确性和鲁棒性。同时,为了适应不同的应用场景,可能还需要对网络结构进行微调,例如增加深度、引入残差连接等,以提升模型的表达能力。 在"点选-main"这个项目中,可能包含了训练代码、预处理脚本、模型配置文件以及测试数据等资源。通过对这些文件的深入研究,我们可以详细了解孪生网络在点选识别任务上的具体实现细节,包括数据处理方式、网络架构的选择、参数设置以及训练策略等。这为我们提供了学习和改进现有点选识别模型的宝贵资料。
2024-07-26 15:59:48 285KB 神经网络
1
使用神经网络,模拟,自动投注选择器,自动/手动数据库更新预测比赛结果如何使用说明:https://sourceforge.net/p/betboy/wiki/Home/视频演示:http://www.youtube .com / watch?feature = player_embedded&v = I2C5TlBSB6w http://www.youtube.com/watch?feature=player_embedded&v=hZ00br89_l8 http://www.youtube.com/watch?feature=player_embedded&v=844iwI8zBZk
2024-07-26 12:01:19 959KB 开源软件
1
神经网络的labview实现,更加方便,修改也更加容易。
2024-07-16 14:23:18 483KB labview 神经网络
1
针对煤炭近红外光谱原始数据的高维、多重共线性、建模容易过拟合等问题,研究了煤炭光谱的特征波长筛选方法,提出了基于平均影响值的改进连续投影算法。实验表明,所提出的算法可以有效降低数据维数、提高数据质量。
1
基于卷积神经网络-门控循环单元结合注意力机制(CNN-GRU-Attention)多变量时间序列预测,CNN-GRU-Attention多维时间序列预测,多列变量输入模型。matlab代码,2020版本及以上。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-07-08 15:12:17 62KB matlab
1
混合NSGAII-多目标粒子群优化算法是一种用于解决多目标优化问题的高效算法,它结合了非支配排序遗传算法(NSGA-II)和粒子群优化(PSO)的优势。NSGA-II是一种基于种群的演化算法,适用于处理多个目标函数的优化问题,而PSO则是一种基于群体智能的全局搜索方法,能够快速探索解决方案空间。 在MATLAB环境下,这个压缩包包含了一系列用于实现这一算法的脚本和函数: 1. `trygatf1.m`, `trygatf3.m`, `trygatf2.m`:这些可能是测试函数,用于检验算法性能。它们可能代表了不同的多目标优化问题,比如测试函数通常模拟现实世界中的复杂优化场景。 2. `NonDominatedSorting.m`:这是非支配排序的实现。在多目标优化中,非支配解是那些没有被其他解在所有目标函数上同时优于或等于的解。这个函数将种群中的个体按照非支配关系进行排序,是NSGA-II的核心部分。 3. `CalcCrowdingDistance.m`:计算拥挤距离,这是NSGA-II中用于保持种群多样性的一个策略。当两个个体在同一非支配层时,根据它们在目标空间中的相对位置计算拥挤距离,以决定在选择过程中谁应该被保留下来。 4. `SelectLeader.m`:选择领袖函数。在混合算法中,可能会有多种策略来选择精英个体,如保留上一代的最佳解或者根据某种规则选择部分解作为领袖。 5. `FindGridIndex.m`:这可能是网格索引查找函数,用于在特定维度或目标空间中分配个体到网格,以辅助解的分类和比较。 6. `DetermineDomination.m`:确定支配关系的函数。每个个体需要与其他个体比较,以确定其在目标函数空间中的支配状态。 7. `SortPopulation.m`:对种群进行排序的函数,可能包括非支配排序和拥挤距离排序等步骤。 8. `DeleteOneRepMemebr.m`:删除重复或冗余个体的函数,确保种群中的每个个体都是唯一的,以保持种群的多样性。 通过这些脚本和函数的组合,用户可以实现一个完整的混合NSGAII-PSO算法,解决多目标优化问题。在实际应用中,用户可能需要调整参数,如种群大小、迭代次数、学习因子等,以适应具体问题的需求,并通过测试函数验证算法的性能和收敛性。这种混合算法的优势在于结合了两种优化方法的特性,既能利用PSO的全局搜索能力,又能利用NSGA-II的非支配排序和拥挤距离策略来保持种群的多样性和进化方向。
2024-07-06 21:22:19 17KB matlab
1
在本文中,我们建议使用卷积神经网络(CNN)来改善轻子对撞机上希格斯玻色子-胶子有效耦合的精度。 CNN用于识别希格斯玻色子和Z玻色子相关的生产过程,希格斯玻色子在质心能量250 GeV和积分光度5 ab处衰变成胶子对,而Z玻色子衰变成轻子对。 -1。 通过使用CNN,有效的耦合测量的不确定性可以使用pythia数据从1.94%降低到约1.28%,使用蒙特卡罗模拟中的herwig数据可以从1.82%降低到约1.22%。 此外,使用不同最终状态成分的CNN的性能表明,领先和次领先射流成分的能量分布在识别中起主要作用,与使用常规CNN相比,使用CNN进行有效耦合的最佳不确定性降低了约35%。 方法。
2024-07-03 15:24:37 552KB Open Access
1