边做边学深度强化学习:PyTorch程序设计实践 倒立摆 Q-Learning
2022-09-02 22:05:28 244KB 边做边学深度强化学习
1
本文以深度强化学习为基础,设计出一种适用于求解大规模车辆路径问题的模型架 构。采用了预训练模型+基于相对位置的 Transformer网络+A2C强化学习训练框架,为 后续研究大规模车辆路径问题的扩展问题和大规模组合优化问题提供了新的深度强化 学习算法框架。本文中的深度强化学习算法解决了以下问题: (1) 不同规模算例可以共享并继承其他规模训练完的模型,在这种共享模型的机制下, 避免了算例规模相近的模型的重复训练。 (2) 预训练模型能够继承其他规模训练出的模型经验,相对位置节点提高了在大规模 车辆路径问题中特征抓取的精确性,A2C强化学习训练框架环节采用无监督学习, 在无标签训练集中训练中规避经验回溯问题,这三方面针对大规模车辆路径问题 做出的调整,提高了训练效率和收敛效果。 (3) 通过预训练机制解决了大规模车辆路径问题内存溢出的情况,解决了目前已有算 法在大规模算例训练时,内存溢出训练中断等问题。 (4) 与经典的启发式算法和元启发式算法进行比较,在同等求解速度的算法中,本文 算法的求解质量方面全面超越这些算法。并且在当前已有的深度强化学习解决方 案中,本文设计的算法和效
2022-09-02 19:07:15 4.58MB 深度强化学习 VRP
1
边做边学深度强化学习:PyTorch程序设计实践 迷宫 随机实验代码
2022-09-02 18:05:39 1.74MB 边做边学深度强化学习
1
边做边学深度强化学习:PyTorch程序设计实践 迷宫 Sarsa
2022-09-02 18:05:38 189KB 边学边做深度强化学习 Sarsa
1
强化学习初学者,该ppt参考油管视频学习https://www.youtube.com/user/zhoububble
2022-08-31 14:51:07 75.52MB 强化学习
1
深度强化学习的原理及其分类价值学习(DQN)、策略学习、Actor-critic原理讲解
2022-08-30 21:05:43 4.61MB
1
这篇论文涉及的相关文献与术语非常多,主要是对自动驾驶AD和强化学习RL进行了归纳和总结,可以先看看思维导图这篇论文大概有什么内容,再细看自己感兴趣或了解的部分;反正我就看着挺痛苦,要学的东西也太多!!!!
2022-08-29 20:19:10 11.03MB
1
基于Pytorch实现的深度强化学习DQN算法源代码,具有超详细的注释,已经在诸多项目中得到了实际应用。主要包含2个文件:(1)dqn.py,实现DQN只能体的结构、经验重放池、Q神经网络、学习方法等;(2)runner.py,使用dqn.py中的智能体与环境进行交互与学习,并最终学会仿真月球车着陆游戏。
2022-08-29 11:05:46 8KB 强化学习 DQN 智能体 月球车着陆
1
DRL用于微电网能源管理 我们针对微电网的能源管理系统问题研究了各种深度强化学习算法的性能。 我们提出了一种新颖的微电网模型,该模型由风力涡轮发电机,储能系统,恒温控制负载,价格响应负载以及与主电网的连接组成。 拟议的能源管理系统旨在通过定义优先级资源,直接需求控制信号和电价来在不同的灵活性来源之间进行协调。 本文实现了七种深度强化学习算法,并进行了实证比较。 数值结果表明,不同的深度强化学习算法在收敛到最优策略的能力上存在显着差异。 通过将经验重播和第二个半确定性训练阶段添加到众所周知的“异步优势演员评论家”算法中,我们获得了更好的性能,并且在能效和经济价值方面收敛于高级策略。 有关此项目的更多信息,访问: :
2022-08-25 22:54:53 22.94MB HTML
1
改善败血症治疗策略 这是论文“使用深度强化学习和专家混合改善脓毒症治疗策略”的代码库 评论者评论 表1中的数据清楚地显示了数据集幸存者/非幸存者的失衡率。 学习不平衡会导致分类器的预测模型出现偏差。 但是,作者没有详细说明他们如何通过使用特定的重新平衡方法或对成本敏感的学习方法来解决此问题,但未提供任何评论。 数据集分为固定的75%训练和验证集和25%的测试集。“->作者应使用10倍交叉验证。 如表2所示,尽管他们的专家混合(MoE)方法的性能在数值上优于医师,内核和DQN的性能,但分析这种数值增加的显着性还是不错的。 随机策略会产生什么效果? 有没有一种方法可以衡量这些方法之间的性能差异的重要性? 本文未介绍其方法的任何时间性能。 训练这种方法需要多长时间? 这个培训时间对于为ICU患者制定个性化治疗策略是否可行? RL和Deep网络都因训练时间长而臭名昭著。 动机 败血症是IC
2022-08-16 14:27:18 478KB JupyterNotebook
1