1.使用其预训练的模型进行图像分类、人脸识别等。 2.采用GPU模式训练一个MNIST数据集合分类器 (CPU的使用/GPU的使用)
2022-03-06 11:33:54 216.95MB matconv DNN 卷积神经网络 深度学习
1
针对传统基于机器学习的流量分类方法中特征选取环节的好坏会直接影响结果精度的问题,提出一种基于卷积神经网络的流量分类算法。首先,通过对数据进行归一化处理后映射成灰度图片作为卷积神经网络的输入数据,然后,基于LeNet-5深度卷积神经网络设计适于流量分类应用的卷积层特征面及全连接层的参数,构造能够实现流量的自主特征学习的最优分类模型,从而实现网络流量的分类。所提方法可以在避免复杂显式特征提取的同时达到提高分类精度的效果。通过公开数据集和实际数据集的系列仿真实验测试结果表明,与传统分类方法相比所提算法基于改进的CNN流量分类方法不仅提高了流量分类的精度,而且减少了分类所用的时间。
1
感兴趣区域欠采样MRI重建:一种深度卷积神经网络方法
2022-02-24 18:08:08 2.32MB 研究论文
1
在实际交通环境中, 所采集到的交通标志图像质量往往受到运动模糊、背景干扰、天气条件以及拍摄视角等因素的影响, 这对交通标志自动识别的准确性、实时性和稳健性提出了很大的挑战。为此提出了改进深度卷积神经网络AlexNet的分类识别算法模型, 该模型在传统AlexNet模型基础上, 以真实场景中拍摄的交通标志图像数据集GTSRB为研究对象, 将所有卷积层的卷积核修改为3×3大小, 为了预防和减少过拟合的出现在两个全连接层后加入dropout层, 并且为了提高交通标志识别精度, 在网络模型第5层后增加两层卷积层。实验结果表明, 改进后AlexNet模型在交通标志识别方面具有一定的先进性和稳健性。
2022-01-09 14:17:41 6.51MB 图像处理 卷积神经 交通标志 改进AlexN
1
针对深度学习中ResNet深度卷积神经网络与LeNet-5模型在图像识别、文字识别和语音识别等领域广泛应用,文中对两种模型的运行机理和方式进行了详细阐述,并对两者在实际应用中的表现进行了对比与分析。首先对两种模型的结构和设计分别进行了叙述,并指出了两种模型面对不同问题的优缺点,且为工程实践提供了指导。然后基于分析进一步对两种模型进行了重建和训练,以实现更优的性能。仿真结果表明,ResNet深度卷积神经网络相比LeNet-5模型在实际应用中具有更好的效果。
1
基于深度卷积神经网络的地震数据断层识别方法.pdf
2022-01-04 21:59:36 6.49MB 神经网络 深度学习 机器学习 数据建模
深度卷积神经网络的基于脑电图情感识别的数据增强
2021-12-18 14:07:53 619KB 研究论文
1
深度卷积神经网络特征提取的数学理论 . pdf
2021-12-15 10:16:17 459KB cnn
1
Segnet是用于语义像素级分割的深层全卷积神经网络体系结构。 这是实现(除了Upsampling层,在论文中,纸张使用了尚未在keras中实现的基于索引的upsampling(我正在研究),但这不应该使差异很大)。 您可以直接从下载代码。 这篇文章解释了代码中正在发生的事情。
2021-12-09 15:40:39 197.78MB JupyterNotebook
1
基于深度卷积神经网络的SAR 图像舰船小目标检测
2021-12-06 15:11:35 2MB 研究论文
1