AI,ML,gradient descent,paper,matlab AI,ML,gradient descent,paper,matlab
2023-03-19 16:40:53 1.16MB gradient descent
1
随机梯度下降法+matlab
2023-03-14 22:52:16 336B 随机梯度下降法 matlab
1
为了提高图像分割的速度和精度,提出了一种新的基于ChanVese水平集模型(CV模型)的梯度加速分割模型。首先,在CV模型的能量函数中加入一个内部能量项,抵消演化过程中水平集函数和符号距离函数的偏差,从而消除分割中周期性重新初始化的过程;其次,提出了梯度加速项,通过感兴趣区域的图像特征,快速得到该区域的边界,且能够提高弱边界的分割精度。实验证明,提出的方法不仅能够加速特定区域的分割、提高分割精度,还能保持分割过程的稳定性。
1
将自适应梯度算法(Adagrad)作为反向传播算法应用于普通的三层神经网络(输入层、隐含层、输出层)的反向传播过程,之后建立数据预测模型进行数据预测,压缩包中train.py为训练过程源码,test.py为测试过程源码,train.csv文件为训练数据集,test.csv文件为测试数据集,.npy文件为模型训练后保存的参数。
1
使用梯度下降的方法进行逻辑回归实战: 问题说明: 这里将建立一个逻辑回归模型来预测一个学生是否被大学录取。 假设你是一个大学的管理员,你想根据两次考试的结果来决定每个申请人的录取机会,你有以前的申请人的历史数据。可以用历史数据作为逻辑回归的训练集。对于每一个样本,有两次考试的申请人的成绩和录取决定。建立一个分类模型,根据考试成绩估计入学概率。 数据链接: 链接:https://pan.baidu.com/s/1-pjwe1ogk30WpzN4Qg1NZA 密码:wqmt 完整代码实现如下: import numpy as np import pandas as pd import matpl
1
深度学习在人脸识别的研究和应用中取得一定成效,但因计算量大且耗时,不适用于小型嵌入式设备。基于融合梯度特征的轻量级卷积神经网络SqueezeNet提取人脸特征,既能保证该网络模型适用于内存相对小的嵌入式设备,又能保证获得的人脸特征对不同光照更具鲁棒性。实验结果表明,将8×8分块图像中提取的一阶梯度特征,与轻量级卷积神经网络提取的全局特征相融合的人脸识别算法,在LFW数据集中识别率可达97.28%,较传统轻量级卷积神经网络的人脸识别方法,识别率提高了4.36%。
2023-03-11 10:51:41 3.41MB 图像处理 嵌入式设 轻量级卷 一阶梯度
1
文章目录案例简介数据可视化建立分类器sigmoid函数:映射到概率的函数model 函数: 返回预测结果值cost : 根据参数计算损失gradient : 计算每个参数的梯度方向descent : 进行参数更新精度 案例简介 参考资料 逻辑回归函数 Python数据分析与机器学习-逻辑回归案例分析 案例内容 现在有一份学生两次考试的结果的数据 根据数据建立一个逻辑回归模型来预测一个学生的入学概率。 数据内容:两个考试的申请人的分数和录取决定。 # 导入相应的包 import numpy as np import pandas as pd import matplotlib as mpl im
2023-03-10 19:42:31 268KB 回归 梯度 梯度下降
1
这是 OLS 批量梯度下降算法的简单实现。 在文件的末尾,我们使用矩阵形式的标准 OLS 来检查梯度下降算法是否提供了合理的结果。 如果算法不收敛并且梯度下降值与普通 OLS 值“太远”,请更改学习率、初始猜测或算法中的其他内容。
2023-03-08 19:44:18 3KB matlab
1
渐变折线 本机用于在Android的Google地图上创建渐变折线的用例。 由于它不是Google Maps Android SDK中的内置API。 案例分析 如果要在Andoird Google Maps的两个位置之间创建渐变折线,则将无法执行此操作,因为根据此注释,它不是Android Google Maps SDK中的内置API。 这使我尝试是否可以本地实现,否则将很难实现。 我发现,在6小时之内,它可能会翻倍,您只需要开箱即用地考虑一下,然后尝试一下。 如何创建GradientPolyLine类? 由于我们将要实现自己创建渐变颜色的功能,因此我们应该知道如何以编程方式创建渐变颜色。 但是,在更深入地研究它之前,我们想提一下,要能够绘制渐变多段线,我们首先应该具有用于​​绘制渐变多段线的路线-坐标列表。 在assets文件夹中,您将找到一个route.json文件,其中包含指示
2023-03-07 16:25:29 19.15MB Kotlin
1
在当前人眼视觉系统(HVS)特性研究的基础上提出基于梯度及HVS特性的离焦模糊图像质量评价模型(GVSSIM)。该模型利用Sobel边缘梯度算子提取图像的梯度信息,并根据人眼视觉特性进行视觉加权,得到新的结构相似性评价指标,进而获得图像质量评价指标。该方法与SSIM(图像结构相似度)评价模型相比,具有计算简单的特点,对离焦模糊图像的评价结果能更好地反映人眼视觉感受。
1