本文以某校园供水系统为研究对象, 当前校园供水系统是校园公共设施的重要组成部分,学校为保障校园供水的正常运行需要投入人力、物力以及财力。随着智能水表的普及,可以从中获取大量的实时供水的数据,后勤部门通过数据的分析,解决供水系统中存在的一些问题,提高校园服务和管理水平。 针对问题一,借助EXCEL软件的数据储存与图像功能,先把四个季度的数据导入EXCEL软件,然后绘制条形统计图(见附录1),统计和分析各个水表的变化规律;利用PANDAS软件把校园内的各个功能区进行划分,求各个功能区的用水情况,分析其用水特征,最后(见附录2)。 针对问题二,根据水表之间的关系模型,一级水表约等于一级水表下所以二级水表的和。利用EXCEL软件, 分析一级水表的用水总量与各个二级水表的用水总量做对比,同理二级水表与三级水表对比,以及三级水表与四级水表对比(见表4-1),经数据分析,得出有一部分数据异常,剔除异常数据(可能是水表损坏等原因)。 针对问题三,我们构建了小波神经网络模型,对于用水量数据进行了预测,我们发现预测结果与实际结果比较接近,可以用网络来判定是否存在损漏问题。
2024-08-14 16:57:50 86.96MB pandas 数据分析 神经网络 网络
1
离散数学 全国组编本 经济科学出版社 左孝凌主编 离散数学 全国组编本 经济科学出版社 左孝凌主编 离散数学 全国组编本 经济科学出版社 左孝凌主编
1
机器学习基础:数学理论+算法模型+数据处理+应用实践 机器学习,作为人工智能领域的重要分支,正在逐渐改变我们生活和工作的方式。要想深入理解和有效应用机器学习技术,必须扎实掌握其基础知识。这其中,数学理论、算法模型、数据处理和应用实践是四大不可或缺的要素。 数学理论是机器学习的基石。统计概率、线性代数、微积分和优化理论等数学知识,为机器学习提供了严密的逻辑基础和数学工具。掌握这些理论知识,可以帮助我们更好地理解机器学习算法的原理和运行机制,从而更有效地应用它们解决实际问题。 算法模型是机器学习的核心。分类算法、聚类算法、回归算法和降维算法等,都是机器学习中常用的算法模型。精通这些算法的原理和应用场景,可以帮助我们根据具体问题的特点选择合适的算法,从而构建出高效、准确的机器学习模型。 数据处理是机器学习的重要环节。在机器学习项目中,数据的质量和预处理方式往往对模型的性能产生重要影响。因此,我们需要掌握特征提取、数据清洗、数据变换和特征选择等数据处理技术,以提高数据的质量和模型的性能。 应用实践是检验机器学习基础知识和技能的试金石。通过参与实际项目,我们可以将理论知识与实际应用相结 ### 机器学习基础知识点详解 #### 一、数学理论 **1.1 统计概率** - **定义**: 统计概率是研究随机事件发生可能性的一门学科。 - **重要性**: 在机器学习中,统计概率帮助我们理解数据分布、模型参数的概率意义,以及如何从样本数据中估计这些参数。 - **应用**: 最大似然估计、贝叶斯估计等。 **1.2 线性代数** - **定义**: 研究向量空间和线性映射的数学分支。 - **重要性**: 用于表示和操作多维数据结构,如矩阵运算、特征值和特征向量等。 - **应用**: 数据集的表示、线性变换、特征分解等。 **1.3 微积分** - **定义**: 研究连续变化的数学分支,包括微分和积分两大部分。 - **重要性**: 微积分是优化算法的基础,帮助我们找到函数的最大值或最小值。 - **应用**: 梯度下降算法、最优化问题求解等。 **1.4 优化理论** - **定义**: 研究如何寻找函数的极值。 - **重要性**: 在机器学习中,优化理论用于调整模型参数,以最小化误差函数或最大化目标函数。 - **应用**: 梯度下降、牛顿法、拟牛顿法等。 #### 二、算法模型 **2.1 分类算法** - **定义**: 将输入数据分配到特定类别的算法。 - **例子**: 逻辑回归、决策树、支持向量机等。 - **评估**: 精确率、召回率、F1分数等指标。 **2.2 聚类算法** - **定义**: 将相似的数据对象分组在一起的方法。 - **例子**: K-Means、层次聚类、DBSCAN等。 - **评估**: 轮廓系数、Calinski-Harabasz指数等。 **2.3 回归算法** - **定义**: 预测连续值输出的算法。 - **例子**: 线性回归、岭回归、Lasso回归等。 - **评估**: 均方误差、R²分数等。 **2.4 降维算法** - **定义**: 减少数据特征数量的技术。 - **例子**: 主成分分析(PCA)、线性判别分析(LDA)等。 - **评估**: 重构误差、解释方差比等。 #### 三、数据处理 **3.1 特征提取** - **定义**: 从原始数据中提取有意义的信息。 - **例子**: 文本中的词频-逆文档频率(TF-IDF)、图像中的边缘检测等。 - **重要性**: 提高模型的预测性能。 **3.2 数据清洗** - **定义**: 清除数据中的噪声、不一致性和缺失值。 - **例子**: 使用均值、中位数填充缺失值,异常值检测等。 - **重要性**: 确保数据质量,减少模型训练时的偏差。 **3.3 数据变换** - **定义**: 转换数据格式,使其符合算法要求。 - **例子**: 归一化、标准化等。 - **重要性**: 加速模型收敛,提高预测准确性。 **3.4 特征选择** - **定义**: 从大量特征中挑选出对目标变量贡献最大的特征子集。 - **例子**: 递归特征消除(RFE)、基于模型的选择等。 - **重要性**: 减少模型复杂度,防止过拟合。 #### 四、应用实践 **4.1 实际项目** - **定义**: 将理论知识应用于解决实际问题的过程。 - **例子**: 推荐系统、图像识别、自然语言处理等。 - **重要性**: 验证理论的有效性,积累实践经验。 **4.2 模型评估** - **定义**: 测量模型性能的过程。 - **例子**: 交叉验证、混淆矩阵、ROC曲线等。 - **重要性**: 选择最佳模型,改进模型性能。 **4.3 过拟合与欠拟合** - **定义**: 模型过于复杂或简单导致的问题。 - **解决方案**: 正则化、增加数据量、特征选择等。 - **重要性**: 平衡模型复杂度与泛化能力。 **4.4 模型调参** - **定义**: 调整模型参数以获得更好的性能。 - **例子**: 网格搜索、随机搜索等。 - **重要性**: 提升模型效果,实现最佳配置。 通过以上对机器学习基础知识的详细介绍,我们可以看出,机器学习不仅仅是一系列算法的应用,更是建立在深厚数学理论基础上的科学。掌握这些理论知识和技术,能够让我们更加深刻地理解机器学习的工作原理,并在实践中取得更好的成果。
2024-08-10 19:39:52 8.96MB 机器学习 聚类
1
2024年大学生数学建模竞赛C题 老外游中国.pdf2024年大学生数学建模竞赛C题 老外游中国.pdf2024年大学生数学建模竞赛C题 老外游中国.pdf2024年大学生数学建模竞赛C题 老外游中国.pdf2024年大学生数学建模竞赛C题 老外游中国.pdf2024年大学生数学建模竞赛C题 老外游中国.pdf2024年大学生数学建模竞赛C题 老外游中国.pdf2024年大学生数学建模竞赛C题 老外游中国.pdf2024年大学生数学建模竞赛C题 老外游中国.pdf2024年大学生数学建模竞赛C题 老外游中国.pdf2024年大学生数学建模竞赛C题 老外游中国.pdf2024年大学生数学建模竞赛C题 老外游中国.pdf2024年大学生数学建模竞赛C题 老外游中国.pdf2024年大学生数学建模竞赛C题 老外游中国.pdf
2024-08-06 20:55:57 135KB 数学建模
1
数学建模优秀论文1998B.pdf数学建模
2024-08-05 15:46:28 20.63MB
1
时间序列分析是统计学和数据分析领域的一个重要分支,特别是在数学建模中有着广泛的应用。MATLAB作为一种强大的数值计算和可视化工具,提供了丰富的函数和工具箱来处理和分析时间序列数据。下面将详细介绍时间序列的基本概念、MATLAB在时间序列分析中的应用以及相关代码的解读。 时间序列是由一系列按照特定时间顺序排列的数据点构成,它可以反映某一变量随时间的变化情况。在数学建模中,时间序列分析常用于预测、趋势分析、周期性检测、异常检测等任务。常见的时间序列模型包括自回归(AR)、移动平均(MA)、自回归移动平均(ARMA)以及自回归积分移动平均(ARIMA)等。 MATLAB提供了`timeseries`类来创建和操作时间序列对象。你可以通过以下步骤创建一个时间序列: 1. 定义时间戳数组,通常为日期或时间戳形式。 2. 然后,定义与时间戳对应的数据值数组。 3. 使用`timeseries`函数将两者组合成一个时间序列对象。 例如: ```matlab time = datetime('2020-01-01','2020-12-31',' daily'); % 创建一年的日期序列 data = rand(365,1); % 随机生成365个数据点 ts = timeseries(data,time); % 创建时间序列对象 ``` 对于时间序列建模,MATLAB的`arima`函数可用于构建ARIMA模型,`estimate`函数可以估计模型参数,`forecast`函数则可以进行预测。例如,构建一个ARIMA(1,1,1)模型并进行预测: ```matlab model = arima(1,1,1); [estMdl,estParams] = estimate(model,ts); forecastData = forecast(estMdl,10,'Y0',ts.Data); % 预测未来10个时间点 ``` 在压缩包中的"时间序列"文件可能包含了多个MATLAB脚本,这些脚本可能涉及以下几个方面: 1. **数据预处理**:包括数据清洗、填充缺失值、去除趋势、季节性调整等。 2. **模型选择**:使用AIC或BIC准则选择最佳的ARIMA模型。 3. **模型估计与诊断**:通过残差图、自相关图和偏自相关图检查模型的适用性。 4. **预测与误差分析**:生成预测结果,并评估预测误差。 通过对这些代码的深入学习,你可以掌握如何在MATLAB中实现完整的时间序列分析流程,这对于数学建模和数据分析工作来说是至关重要的技能。同时,理解并应用这些代码有助于提高对时间序列模型的理解,增强数据分析能力。
2024-07-31 21:15:38 12.78MB 数学建模 MATLAB 时间序列
1
2023.08.23 V10.1版本 1、增加了若干数学公式示例; 2、修复了一些bug。 2022.07.13 V10.1版本 1、增加了若干数学公式示例; 2、修复了一些bug。 2021.09.03 V10版本 1、增加了若干数学公式示例; 2、修复了一些bug。 2021.08.13 V9版本 1、增加了若干数学公式示例; 2、增加了若干常见表格示例; 3、增加了R语言、Python代码示例。 2021.08.4 V8版本 1、增加了算法伪代码的示例; 2、修复了\emph出现下划线的bug。 2021.07.23 V7版本 1、增加了cover页替换说明; 2、增加了粗体字体的代码; 3、增加了定理环境的代码。 2020.08.01 V6版本 1、修复了标题字体过大问题; 2、参考文献条目之间间距过大问题。 2018.09.12 V5版本 1、修复了摘要页的页码问题; 2、目录中增加了摘要标题。 2018.9.12 V4版本 1、修改了符号说明表格的格式,使其更美观; 2、修改了表格的行高,使得表格更加紧凑; 3、修改了图形表格与标题之间的垂直距离; 4、修改
2024-07-28 11:56:30 1.58MB 数学建模 LaTeX模板 数模国赛
1
2023年数学建模国赛省一高教社杯,个人原创资源,禁止转载,违权必究,具体源程序代码及word版私q:2935790052
2024-07-16 14:04:05 1.24MB
1
数学建模中,MATLAB是一种非常常用的工具,因为它提供了丰富的数学函数库和直观的编程环境,便于实现各种复杂的算法。以下将详细讲解标题和描述中提到的几个关键算法: 1. **模拟退火算法(Simulated Annealing)**: 模拟退火算法是一种全局优化方法,灵感来源于固体物理中的退火过程。它通过允许解决方案在一定程度上接受比当前解更差的解来避免陷入局部最优,从而有可能找到全局最优解。在MATLAB中,可以自定义能量函数和温度下降策略来实现模拟退火算法。 2. **灰色关联分析(Grey Relational Analysis)**: 灰色关联分析是处理不完全或部分信息数据的一种方法,尤其适用于多因素、非线性问题。在MATLAB中,可以通过计算样本序列之间的灰色关联系数来评估它们之间的相似程度,进而进行数据分析和模式识别。 3. **主成分分析(Principal Component Analysis, PCA)**: 主成分分析是一种降维技术,用于将高维数据转换为一组低维的正交特征,同时保留原始数据的主要信息。在MATLAB中,可以使用`princomp`函数实现主成分分析,该函数会返回主成分得分和旋转矩阵。 4. **偏最小二乘回归(Partial Least Squares Regression, PLSR)**: 偏最小二乘回归是一种统计学上的回归分析方法,用于处理多重共线性和高维问题。它通过寻找两个向量空间的最佳线性投影,使得因变量与自变量之间的相关性最大化。在MATLAB中,可以使用`plsregress`函数执行偏最小二乘回归。 5. **逐步回归(Stepwise Regression)**: 步骤回归是一种模型选择策略,通过逐步增加或删除自变量来构建最佳预测模型。在MATLAB中,可以使用`stepwiseglm`函数进行前进选择、后退删除或者双向选择等步骤回归方法。 6. **主成分回归(Principal Component Regression, PCR)**: 主成分回归结合了主成分分析和线性回归,先通过PCA降低自变量的维度,然后在新的主成分空间中进行回归分析。这可以减少模型的复杂性并可能提高预测性能。在MATLAB中,可以先用`princomp`做主成分分析,再使用常规的回归函数进行PCR。 至于压缩包中的文件`dyzbhg.m`和`xiaoqu.m`,由于没有具体的文件内容,无法直接解读它们实现了哪种算法。通常,`.m`文件是MATLAB的脚本或函数文件,可能包含了上述算法中的某一种或几种的实现。如果需要进一步了解这些文件的功能,需要查看文件的具体代码。在MATLAB环境中运行这些文件,或者使用`edit dyzbhg`或`edit xiaoqu`命令打开并查看源代码,以获取更详细的信息。
2024-07-11 12:16:59 141KB matlab 数学建模
1
钻井布局的优化模型 钻井布局的优化模型 摘要:本文针对勘探部门在钻井找矿时,如何进行最优钻井布局的问题,进行了深入的分析和讨论,利用一维搜索、二维搜索、三维搜索得到不同条件下最多可利用旧井数的算法。最后结果是: 问题一:利用二维搜索法进行求解,当网络的一个结点在区域 D={(x,y)} 的范围内变化,方向与坐标轴平行时,可以利用的旧井点数最多,分别为2、4、5、10四个井点。 问题二:采用三维搜索法求解,当网格的一个结点在(0.02,0.2)点,横向与x轴成44.64°时,可利用的旧井点数最多,分别为1、6、7、8、9、11六个井点
2024-07-10 15:10:54 63KB 数学建模 全国一等奖
1