针对当前工业异常数据检测技术未充分考虑数据的时序特征以及训练样本中可能含有异常样本的问题,提出一种检测异常数据的方法:基于时序特征将遥测量与遥信量分为离散量与连续变化量,并分别通过改进后的K-均值算法与传统自回归模型检测离散量与连续变化量的异常数据,在训练聚类模型的过程中,通过计算异常因子来剔除含有异常样本的聚类簇,在训练自回归模型过程中,将不属于正常取值区间的异常样本剔除。最后在OMNeT 平台下搭建仿真小型储水加热工业系统并进行验证,实验结果表明:该方法可以有效地检测出现场设备中的异常数据,相比于其他同类基于聚类的异常检测模型,采用该方法检测异常数据的漏报率更低。
1
matlab非参数代码异常检测器 时空异常检测的matlab代码 介绍 源代码在 Linux 系统上使用 Matlab R2009b 进行测试。 除了用于可视化目的的tight_subplot.m 外,不使用非标准库。 该文件包含在工作目录中。 “数据”文件夹中还提供了清洁和对齐的传感器数据。 测试 可以通过在工作目录中键入“nonparametric_approach”来测试非参数方法。 可以通过在工作目录中键入“probabilistic_approach”来测试概率方法。 这两种方法都会在几秒钟内产生测试结果。
2022-05-17 15:24:07 689KB 系统开源
1
异常检测风险 在对金融风险度量和收益执行异常检测的5个模型之间的比较。 这些实验是学位项目“投资组合风险管理异常检测”的一部分,可以在Simon_Westerlind_Masters_Thesis.pdf或上找到。 先决条件 安装 。 安装conda要求 conda install --yes --file requirements.txt 安装软件包。 否则,ARMA-GARCH将不起作用。 安装 。 复制存在于./htm中的returns_and_risk文件夹并将其放置在/ nupic / examples / opf / clients /中 跑步 要运行EWMA,ARMA-GARCH,LSTM和HardLimits,请运行 python garch_long.py 在./garch文件夹中。 之后运行 python run.py --plot 可以在/ nupic /
2022-05-13 22:49:43 1.34MB finance risk detection lstm
1
一个异常检测库,包含最先进的算法和功能,例如实验管理、超参数优化和边缘推理。 Anomalib 是一个深度学习库,旨在收集最先进的异常检测算法,用于在公共和私有数据集上进行基准测试。Anomalib 提供了最近文献中描述的几种即用型异常检测算法的实现,以及一组有助于开发和实现自定义模型的工具。该库非常关注基于图像的异常检测,该算法的目标是识别异常图像或数据集中图像中的异常像素区域。Anomalib 不断更新新算法和训练/推理扩展,所以请继续检查! 主要特点: 最大的即用型深度学习异常检测算法和基准数据集的公共集合。 基于PyTorch Lightning的模型实现,以减少样板代码并将实现工作限制在基本要素上。 所有模型都可以导出到OpenVINO中间表示 (IR),以在英特尔硬件上进行加速推理。 一组推理工具,用于快速轻松地部署标准或自定义异常检测模型。
2022-05-11 09:04:51 2.77MB python 算法 开发语言
基于抽样测量的高速网络实时异常检测模型
2022-05-08 19:05:27 146KB 文档资料
针对传统的电力网络流量检测安全预警系统在面对海量高维度数据时,其在精度、实时性、扩展性以及效率上都无法满足需求的问题,建立出一种基于Spark的电网工控系统流量异常检测平台.该平台以Spark为计算框架,主要由数据采集与网络流量深度包检测协议解析模块,实时计算数据分析处理模块,安全预警预测模块和数据存储模块组成,为流量异常检测提出了一套完整的流程.实验结果表明,该平台能够有效地检测出异常流量,做出安全预警,方便工作人员及时做出决策,这充分说明该平台非常适用于电力控制系统,能够应对海量高维复杂数据做出实时分析以及安全预警,极大地提高了电网工控系统的安全性能.
2022-05-08 15:40:45 1.55MB Spark 流量异常检测 电网工控系统 Kafka
1
神经网络是一种模拟生物学神经的机器学习模型,数据来源于输入层并流经具有各种激活阈值的节点。递归神经网络是一种在输入被理解之前保持其内部记忆的神经网络,所以它们可以进行数据流中时间依赖的结构的学习。机器学习早已在许多产品中发挥过威力了,我们日常就与很多打过交道,从像苹果的Siri和谷歌的Now之类的“智能”助手,到像亚马逊建议买新产品的推荐引擎,再到谷歌和Facebook使用的排名系统,凡此种种,不一而足。最近,机器学习由于“深度学习”的进展闯入了公众视野,这些进展包括AlphaGo击败了围棋大师李世乭,以及围绕图像识别和机器翻译方面骄人的新产品。在本系列的文章中,我们将介绍在机器学习方面强大而
1
提出一种图分析方法用于动态人群场景异常状态检测.使用自适应Mean shift算法对场景速度场进行非参数概率密度估计聚类,聚类结果构成以聚类中心为顶点、各聚类中心之间距离为边权重的无向图.通过分析图顶点的空间分布及边权重矩阵动态系统的预测值与观测值之间的离散程度,对动态场景中的异常事件进行检测和定位.使用多个典型动态场景视频数据库进行对比实验,结果表明图分析方法适应性强、可有效监控动态人群场景中的异常状态.
1
安全技术-网络信息-移动设备及网络的异常检测方法研究.pdf
2022-05-01 22:00:38 4.78MB 文档资料 安全 网络