数据集齐全(60k+数据) 所用方法多,不论老师要求什么,总有符合用得上(分类,逻辑回归,时间序列) 代码+数据集+报告一条龙服务。 内容说明: 数据预处理,数据清洗,对数据进行描述性分析,统计分析,相关性分析,用ggplot2画图。并分别用逻辑回归和决策树分类建立模型。和用时间序列预测数据。 难度不低于课程实践
2024-07-02 10:43:28 17.94MB r语言 逻辑回归 数据挖掘
信号分选SDIF的matlab源码,可根据需求自行修改参数。仿真程序的部分结果可见相关文章:【雷达通信】信号分选SDIF序列差直方图算法原理及仿真程序【免费matlab源码,可自行修改参数】
2024-07-02 09:28:07 3KB matlab
1
基于粒子群优化BP神经网络的单变量时间序列预测Matlab程序PSO-BP 基于粒子群优化BP神经网络的单变量时间序列预测Matlab程序PSO-BP 基于粒子群优化BP神经网络的单变量时间序列预测Matlab程序PSO-BP 基于粒子群优化BP神经网络的单变量时间序列预测Matlab程序PSO-BP 基于粒子群优化BP神经网络的单变量时间序列预测Matlab程序PSO-BP 基于粒子群优化BP神经网络的单变量时间序列预测Matlab程序PSO-BP 基于粒子群优化BP神经网络的单变量时间序列预测Matlab程序PSO-BP 基于粒子群优化BP神经网络的单变量时间序列预测Matlab程序PSO-BP
2024-06-29 15:18:30 26KB 神经网络 matlab 时间序列预测 PSO-BP
1
PEMS 数据集是由美国加利福尼亚州的交通部门联合其他伙伴机构建立的统一公开交通数据库。美国加利福尼亚州的交通部门在交通路网上大约设置了超过39000 个交通监测站,交通管理部门安装在路网上的各类传感器可以实时地收集所在高速公路上的交通状况信息,越是接近市区人口密集的地区,传感器布置的也越密集,从分布上来看,这些传感器大多被安置在靠近市区的路段上。PEMS提供了超过十年的历史交通状况数据,整合了有关加州运输公司以及其他交通机构系统的各类信息。 PemsD7 交通数据集:数据由分布在加利福尼亚州高速公路系统(CalTrans)中选择 228 个站点数据。数据集从30 秒的数据样本聚合到5 分钟的时间间隔内。时间范围在 2012 年5 月和6 月的工作日的228 个站点交通速度信息,数据包括邻接矩阵和特征矩阵。 邻接矩阵是通过分析已有时空交通数据的特性,构建一种新的具有相似交通流量模式的 矩阵,特征矩阵是每个传感器节点的时间序列特征矩阵。
2024-06-24 10:18:24 40.78MB 深度学习 交通预测 数据挖掘 交通网络
1
本博客将介绍一种新的时间序列预测模型——FNet它通过使用傅里叶变换代替自注意力机制,旨在解决传统Transformer模型中的效率问题。FNet模型通过简单的线性变换,包括非参数化的傅里叶变换,来“混合”输入令牌,从而实现了快速且高效的处理方式。这种创新的方法在保持了相对较高的准确性的同时,显著提高了训练速度,特别是在处理长序列数据时更显优势。FNet的工作原理,并通过一个实战案例展示如何实现基于FNet的可视化结果和滚动长期预测。预测类型->多元预测、单元预测、长期预测。适用对象->受硬件所限制的时候,FNet是一种基于Transformer编码器架构的模型,通过替换自注意力子层为简单的线性变换,特别是傅里叶变换,来加速处理过程。FNet架构中的每一层由一个傅里叶混合子层和一个前馈子层组成(下图中的白色框)。傅里叶子层应用2D离散傅里叶变换(DFT)到其输入,一维DFT沿序列维度和隐藏维度。总结:FNet相对于传统的Transformer的改进其实就一点就是将注意力机制替换为傅里叶变换,所以其精度并没有提升(我觉得反而有下降,但是论文内相等,但是从我的实验角度结果分析精度是有下降的
1
matlab simulink扩频通信系统 QPSK、MSK调制 OVSF、Walsh两种序列 simulink仿真,出误码率对比曲线图 各点频谱图,谱分析,抗干扰分析 卷积编码,维特比译码 不同扩频码、不同调制、加干扰,有无对比扩频四套系统。
2024-06-16 14:17:58 146KB matlab
1
9.1 SPSS在因子分析中的应用 (6)旋转后的因子载荷矩阵 下表中显示了实施因子旋转后的载荷矩阵。可以看到,第一主因子 在“交通和通信”和“医疗保健”等五个指标上具有较大的载荷系 数,第二主因子在“居住”和“衣着”指标上系数较大,而第三主因 子在“杂项商品与服务”上的系数 大。此时,各个因子的含义更加 突出。
2024-06-13 11:16:56 9.53MB 专家建模器 平稳序列 时间序列
1
基于灰狼算法(GWO)优化门控循环单元(GWO-GRU)的时间序列预测。 优化参数为学习率,隐藏层节点个数,正则化参数,要求2020及以上版本。 评价指标包括:R2、MAE、MSE、RMSE和MAPE等,代码质量极高,方便学习和替换数据。
2024-06-06 19:57:03 27KB
1
ERNIE 3.0中文预训练模型进行MSRA序列标注 文章链接:https://blog.csdn.net/sinat_39620217/article/details/125071909?csdn_share_tail=%7B%22type%22%3A%22blog%22%2C%22rType%22%3A%22article%22%2C%22rId%22%3A%22125071909%22%2C%22source%22%3A%22sinat_39620217%22%7D&ctrtid=UfDbk
2024-06-06 14:22:35 2KB 文档资料
1
序列号 自动填写 使用说明: 1、将序列号拷贝到剪切板。 2、将光标定位到序列号输入处。 3、按F10键。
2024-06-05 10:06:34 159KB 自动填写
1