spacy-lookup:基于字典的命名实体识别
1
NER_CRF_Model:使用条件随机字段的命名实体识别
2022-04-08 10:40:44 3KB JupyterNotebook
1
课程目标: 学习完本门课程,您将对自然语言处理技术有更深入的了解,彻底掌握中文命名实体识别技术。 适用人群: 自然语言处理从业者、深度学习爱好者 课程简介: 命名实体识别作为自然语言处理的基础技术之一,在自然语言处理上游各个任务(问答系统、机器翻译、对话系统等)重扮演者十分重要的角色,因此深入掌握命名实体识别技术,是作为自然语言处理从业者毕本技能,本课程理论与实践相结合,希望能给大家带来帮助。 课程要求: (1)开发环境:Python3.6.5 Tensorflow1.13.1;(2)开发工具:Pycharm; (3)学员基础:需要一定的Python基础,及深度学习基础; (4)学院收货:掌握命名实体识别关键技术; (5)学院资料:见课程资料; (6)课程亮点:全程实战操作,徒手撸代码。
1
命名实体识别是自然语言处理中的热点研究方向之一,目的是识别文本中的命名实体并将其归纳到相应的实体类型中。
2022-03-26 19:52:16 574KB NER
1
基于BERT的中文数据集下的命名实体识别(NER) 基于tensorflow官方代码修改。 环境 Tensorflow:1.13 的Python:3.6 tensorflow2.0会报错。 搜狐比赛 在搜狐这个文本比赛中写了一个基准,使用了bert以及bert + lstm + crf来进行实体识别。 其后只使用BERT的结果如下,具体评估方案请看比赛说明,这里的话只做了实体部分,情感全部为POS进行的测试嘲笑。 使用bert + lstm + crf结果如下 训练验证测试 export BERT_BASE_DIR=/opt/hanyaopeng/souhu/data/chinese_L-
2022-03-24 12:22:48 1.7MB nlp deeplearning ner bert
1
语义理解/口语理解,项目包含有词法分析:中文分词、词性标注、命名实体识别;口语理解:领域分类、槽填充、意图识别。
2022-03-22 16:05:31 3KB Python开发-自然语言处理
1
斯坦福NLP的信息提取,包括命名实体识别和关系提取等。
2022-03-16 16:20:42 318KB NER NLP
1
酒店推荐系统源码java 基于深度学习的企业实体识别 摘要 ​ 随着深度学习技术的发展,文字识别与自然语言处理近年来受到广泛关注。结合文字识别与自然语言处理技术解决传统方法无法处理的问题,成为企业提高自身竞争力的重要利器。 需求分析 背景及研究意义 ​ 实体识别技术在布局各类证件、通用文字识别等相关领域都有着重要应用前景,我们相信实体识别技术将会支持更多应用场景,满足更多用户的需求。例如,通过拍照扫描等方式,提供身份信息的快速自动录入体验,以提高边检/酒店/旅游/公共安全以及电商等行业领域的工作效率;自然场景实体识别可以捕获现实中多种场景下的文字,可有效支持虚拟现实、人机交互、图像检索、无人驾驶、车牌识别、工业自动化等领域中广泛的应用。综上,实体识别技术有着广泛的应用前景。 作品简介 ​ 企业实体识别主要应用在我们目前业务系统中的查证功能。查证功能的主要作用是将用户拍摄的店铺照片经过OCR识别后进行店铺名称的提取,然后通过店铺名称查询证照库,获取该店铺办理过的所有证照信息,方便用户进一步了解该店铺。在日常应用中,例如外出就餐时利用我们的系统随手拍摄要就餐的饭店门脸,系统会自动检测
2022-03-10 10:14:12 10.93MB 系统开源
1
工具介绍 LAC全称中文的词法分析,是百度自然语言处理部研发的一种联合的词法分析工具,实现中文分词,词性标注,专名识别等功能。该工具具有以下特点和优势: 效果好:通过深度学习模型联合学习分词,词性标注,专名识别任务,单词索引,整体效果F1值超过0.91,词性标注F1值超过0.94,专名识别F1值超过0.85,效果领先。 效率高:精简模型参数,结合Paddle预测库的性能优化,CPU单线程性能达800QPS,效率领先。 可定制:实现简单可控的干预机制,精确匹配用户字典对模型进行干预。 调用便捷:支持一键安装,同时提供了Python,Java和C ++调用接口与调用示例,实现快速调用和集成。 支持
1
Lattice LSTM中文命名实体识别采用PyTorch实现
2022-03-04 20:40:19 336KB Python开发-机器学习
1