多类图像分类器 将视网膜OCT图像分为4类之一-NORMAL,CNV,DME或DRUSEN 分析的目标和动机正如我们所知道的,人类的预期寿命空前高。 由于医疗用品,服务和技术的增加,人们的寿命比祖先长。 因此,由于与眼睛健康有关的退化作用主要随着年龄而增加,因此眼睛疾病增加。 伴随着这种情况,由于数字化,近来人类在屏幕前花费越来越多的时间,这进一步增加了眼睛黄斑变性的问题。 需要开发更有效,快速和简便的方法来检测眼部疾病。 该项目的动机是研究一种可以帮助眼科医生使用图像识别技术更准确,更快速地识别视网膜疾病的技术。 我们可以检测到最常见的眼部疾病,因为它们很常见,因此无需花费很多时间就可以检测出来。 该项目涉及的眼疾是 AMD(与年龄有关的肌肉变性):这种疾病在老年人中很常见,并且是由于视网膜受损或组织死亡引起的。 在全球75岁以上的成年人中,约有35%患有AMD。 DR(非绝热性视网
2022-01-14 20:45:38 1.28MB JupyterNotebook
1
多类花卉分类 使用Keras进行多类花卉图像分类 用法用于训练模型:python3 training_model-数据集training_set-模型trained_model-情节图用于预测图像:python3预报.py-数据集training_set-模型trained_model-图像test_set / rose1 该模型已使用Keras库进行了训练。 这里使用的神经网络的架构通常称为LeNet架构,其描述如下:INPUT => CONV => RELU => POOL => CONV => RELU => POOL => FC => RELU => FC 为了训练该模型,最优化的纪元数是25,而使用Adam Optimizer的批量大小是32,初始学习率是1e-3。 这里的预训练模型具有以下准确性/损失,这也显示在图中plot.png训练准确性-0.9057验证准确性-0
2022-01-09 15:59:00 237.67MB multiclass-classification cnn-classification Python
1
多类排队网络的稳定性及其布朗模型.pdf
2022-01-05 17:22:10 2.74MB 多类排队网络
1
煤与瓦斯危险性的准确预测一直是矿山安全领域的关键技术难题和重大研究课题。支持向量机是在瓦斯预警中广泛使用的一种技术,以统计学习理论和支持向量机为基础,通过研究基于模糊支持向量机的多类分类方法,对原算法进行改进,采用模糊多类支持向量机,并构造模糊隶属函数,同时使用序列最小最优化算法进行求解,以期提高算法的精度和速度。
2022-01-04 14:17:29 506KB 行业研究
1
基于SBA和KNN的多类分类算法.pdf
2022-01-01 16:01:23 297KB 分类算法 数据结构 算法 参考文献
支持向量机多类分类算法新研究.pdf
2022-01-01 12:01:29 364KB 分类算法 数据结构 算法 参考文献
一种基于指数损失函数的多类分类AdaBoost算法及其应用.pdf
2022-01-01 12:01:28 302KB 分类算法 数据结构 算法 参考文献
编写了 Matlab 代码以将叶子分类为以下类型之一:'Alternaria Alternata'、'Anthracnose'、'Bacterial Blight'、'Cercospora Leaf Spot' 和 'Healthy Leaves'。 分类由 Multiclass SVM 完成(一对一) 怎么跑?? 1.将文件夹'Leaf_Disease_Detection_code'放在Matlab路径中,并将所有子文件夹添加到该路径中2. 运行 DetectDisease_GUI.m 3.在GUI中,单击“加载图像”,然后从Manu's Disease数据集中加载图像,单击“增强对比度”。 4. 接下来点击Segment Image,然后输入包含ROI的cluster no,即只有疾病受影响的部分或健康的部分5. 点击分类结果。 然后测量准确性(在这种情况下是健康与所有疾病)。 代码
2021-12-22 23:33:23 867KB matlab
1
为了实现在复杂环境下具有较高准确率的交通标志识别以及在小样本情况下也能良好工作的识别网络,提出一种基于卷积神经网络和多类SVM的交通标志识别模型。此模型不需人工设计特征提取算法,且在小样本训练集上也能训练出具有较高准确率的分类模型。除此之外,利用迁移学习策略,避免重新初始化卷积神经网络,在节省大量样本与训练时间的同时能有效避免过拟合的发生。实验结果表明,提出的分类模型在小样本训练集上进行训练后得到的模型在实际测试中有较好的表现且对处于复杂背景下和严重畸变的交通标志具有可靠的识别能力和良好分类结果。
2021-12-21 13:00:32 1.3MB 自动化技术
1
改进的基于SVM决策树的多分类算法,刘靖雯,王小捷,标准的SVM是针对两类的分类问题,如何将两类问题推广到多类问题上,是目前研究的一个热点。本文提出了一种改进的基于SVM决策树的多
1