为进一步提高红外与可见光融合图像的细节信息,并降低伪影和噪声,提出一种基于ResNet152深度学习模型的红外与可见光图像融合算法。首先,将红外与可见光图像分解成低频部分和高频部分;然后,运用平均权重策略对低频部分进行融合,生成新的低频部分,使用ResNet152网络对高频部分进行特征提取,得到多个特征层,对特征层分别进行L1正则化、卷积运算、双线性插值上采样和最大选择策略得到最大权重层,由最大权重层和高频部分相乘得到新的高频部分;最后,由新的低频部分和高频部分对图像进行重建,获得融合后的红外与可见光图像。实验结果表明,该算法在保留图像显著特征的同时使融合图像获得了更多的细节纹理信息,且有效地降低了伪影和噪声,其主观评价和客观评价都优于对比算法。
1