可见光与近红外医学图像融合算法及软件-王艳翔
2022-12-07 15:02:49 489KB 图像融合算法
1
A MULTI-EXPOSURE IMAGE FUSION BASED ON THE ADAPTIVE WEIGHTS REFLECTING THE RELATIVE PIXEL INTENSITY AND GLOBAL GRADIENT 论文复现
2022-12-02 12:03:39 3.16MB 多帧图像不同曝光融合
1
为了准确地估计源图像的清晰区域,提高多聚焦图像融合的效率,提出了一种新的基于清晰度估计的图像融合方法。首先利用基于离散小波的清晰度估计方法获取源图像的聚焦区域;然后使用均值滤波和空洞填充进一步优化该聚焦区域;最后结合清晰度估计和相似性特性,将不同聚焦区域合并生成融合图像。该方法获得的融合图像在客观评价和主观质量上都优于以往基于清晰度的图像融合方法。
2022-11-21 15:18:49 2.32MB 多聚焦 清晰度估计 图像融合 相似性
1
摘要为进一步提高多聚焦图像的融合质量提出一种基于监督学习的全卷积神经网络多聚焦图像融合算法该算法旨在运用神经网络学习源图像不同聚焦区域的互补关系即选择源图像中不
2022-11-17 14:33:14 13.23MB 图像处理 监督学习 全卷积 多聚焦图
1
由于相机和显示设备的动态范围远小于人眼可识别的动态范围,相机获取到的图像往往不能兼顾亮部细节与暗部细节。多曝光图像融合可以解决上述问题,但目前该方法大多基于相机与目标场景相对静止的前提。文中通过结合图像配准和图像融合,实现一个可以处理运动相机拍摄的多曝光图像的融合系统。首先,配准模块提取SURF特征点,进行欧式距离粗匹配;其次,配准模块利用RANSAC算法进行精匹配,提取变换模型参数并进行投影变换以矫正图像;最后,融合模块利用金字塔融合法融合已配准图像。实验结果表明该系统可有效矫正图像空间位置偏差,扩大图像的动态范围,提高图像质量。
1
SAR和可见光图像成像机理不同,图像差异较大,较难取得良好的融合效果。本文面向目标识别,通过分析图像的成像机理,首先在NSCT融合框架下,将SAR图像中重要的目标信息加入到可见光图像中,并尽可能多的保留源图像的边缘细节信息;再结合数学形态学和多尺度空间理论,提取源图像的亮、暗细节特征,进行特征级融合,得到亮、暗细节特征显著增强的融合图像。实验结果表明,本文算法有效的融合了SAR图像的目标信息,并增强了源图像的细节特征,达到了较好的视觉效果,提高了图像的目标检测和识别能力。
2022-11-15 10:16:58 929KB SAR; 可见光图像; NSCT; 数学形态学;
1
WORD格式,基于多尺度的图像融合,其步骤如下:首先,对已配准的原图像进行小波分解,相当于使用一组高低通滤波器进行滤波,分离出高低频信息,其次,对每层分解得到的高低频信息,采取不同融合策略。。。详列了问题,思路及实现代码
2022-11-11 12:30:08 78KB 小波图像融合 MATLAB图像处理
1
针对现有的红外与可见光图像融合算法存在融合图像的对比度与清晰度降低和细节纹理信息丢失等问题,提出将鲁棒主成分分析(RPCA)、压缩感知(CS)和非下采样轮廓波变换(NSCT)相结合的融合算法。首先对两幅源图像分别进行预增强处理,应用RPCA分解得到相应的稀疏分量和低秩分量;然后对稀疏矩阵利用结构随机矩阵压缩采样,利用高斯梯度-信息反差对比度(GG-DCI)压缩融合,经正交匹配追踪法(OMP)重构;接着对低秩矩阵采用NSCT分解成低频子带和高频子带,低频子带选用区域能量-直觉模糊集(RE-IFS)融合,最高频子带利用最大绝对值规则融合,其他高频子带选用自适应高斯区域方差融合;最后将融合后的稀疏分量和低秩分量叠加得到融合图像。实验结果表明,本文算法相比其他算法能够更好地提高融合图像的对比度和清晰度,保留了丰富的细节纹理信息,客观评价指标也总体优于现有算法,有效提升了红外与可见光图像的融合效果。
1