针对托攻击提出一种半监督托检测模型,对标记用户分类计算簇中心,给出中心用户相似度特征属性。对不同攻击选择合适的特征指标,把输入用户划分到不同的簇集中,通过簇集中输入用户全部评分项为最大值的均值与标记用户对该项均值差,确定攻击项。依据特征指标对不同簇集进行两次分类,进而确定攻击对象。实验证明,该检测算法对不同的托攻击有较高的检测准确率。
2022-02-28 10:37:56 624KB 推荐系统 托攻击 特征指标 半监督 聚类
1
针对传统高斯分布容易受到数据样本边缘值和离群点噪声的影响,改用t分布替代原有的高斯混合模型,并使用期望最大化(Expectation Maximization,EM)算法对网络流数据样本进行t分布混合模型的建模。为降低EM算法的迭代次数,对t分布混合模型进行了改进,用理论和实验验证了算法的有效性,并对网络多媒体业务流进行了分类研究。实验表明,提出的算法有较高的分类准确率,拟合的模型要优于传统的K-Means算法和传统的高斯混合模型的EM算法。
2022-02-23 20:07:53 936KB 论文研究
1
半监督学习pdf讲义超详细
2022-02-14 18:26:29 6.73MB 半监督学习
1
预算matlab代码 全卷积网络的半监督深度学习MICCAI 2017论文的正式实施 克里斯托夫·鲍尔( Christoph Baur ,慕尼黑TU),沙迪·阿尔巴古尼( Shadi Albarqouni) (慕尼黑TU),纳西尔·纳瓦布( Nassir Navab )慕尼黑(TU)和巴尔的摩JHU C. Baur和S. Albarqouni对这项工作做出了同等贡献 抽象的: 深度学习通常需要大量带标签的训练数据,但是注释数据既昂贵又乏味。 半监督学习的框架提供了使用标记数据和任意数量的未标记数据进行训练的方法。 最近,针对标准CNN架构对半监督式深度学习进行了深入研究。 但是,全卷积网络(FCN)为许多图像分割任务设定了最新技术。 据我们所知,目前尚无针对此类FCN的半监督学习方法。 在随机特征嵌入的帮助下,我们提出了用于半监督学习的辅助流形嵌入到FCN的概念。 在有关MS病变分割的艰巨任务的实验中,我们利用提议的框架进行域适应,并报告了相对于基线模型的实质性改进。 C. Baur和S. Albarqouni对这项工作做出了同样的贡献。 资源 要求 MATLAB 2017a(最后测试
2022-02-12 11:26:51 13.77MB 系统开源
1
在微博谣言检测中,对微博谣言进行正确标注需要耗费大量的人力和时间,同时数据类别的不平衡也影响了微博谣言的正确识别。为了解决该问题,提出一种基于Co-Forest算法针对不平衡数据集的改进方法,利用SMOTE算法和分层抽样平衡数据分布,并通过代价敏感的加权投票法来提高对未标记样本预测的正确率。该方法只需要对少量训练数据实例进行谣言类别标注即可有效检测谣言。10组UCI测试数据和2组微博谣言的实证实验证明了算法有效性。
1
基于大数据算法与数据结构学习:ELM+OSELM+KELM+半监督SSELM+USELM的matlab程序
2022-02-03 14:11:00 357KB SSELM ELM KELM 半监督SSELM
基于半监督K-means的主动学习聚类算法 ,孙凯,孟祥武,针对K-means算法对初始聚类中心敏感,针对不规则聚类簇效果较差的缺点,提出了一种基于半监督K-means的主动学习算法。为了针对指定的k
1
利用未标记示例的主流学习技术主要有三大类[Zhou06],即半监督学习(semi-supervised learning)、直推学习(transductive learning)和主动学习(active learning)
2022-01-27 19:18:02 400KB 半监督学习 协同训练
1
半监督转移学习的自适应一致性正则化 该存储库用于以下论文中介绍的自适应知识一致性和自适应表示表示一致性: Abulikemu Abuduweili,Li Xingjian Li,Humphrey Shi,徐成中和Dou Dedou,“半监督转移学习的自适应一致性正则化”。 该代码是在具有Tesla V100 GPU的CentOS 6.3环境(Python 3.6,PyTorch 1.1,CUDA 9.0)上开发的。 内容 介绍 在这项工作中,我们考虑半监督学习和转移学习的结合,从而导致一种更实用和更具竞争力的范例,该范例可以利用源域中强大的预训练模型以及目标域中的带标签/未带标签的数据。 为了更好地利用预训练权重和未标记目标示例的价值,我们引入了自适应一致性正则化,它由两个互补组成部分:源模型和目标模型之间((标记和未标记)示例上的自适应知识一致性(AKC);以及目标模型上带标签和未
2022-01-16 10:30:29 708KB Python
1
事实证明,极限学习机(ELM)是广泛领域中一种有效的学习范例。 使用内核函数方法而不是隐藏层,KernelELM克服了由随机分配的权重引起的变化问题。 本文在半监督极限学习机(SSELM)中引入了基于核的优化,并通过实验对性能的改进进行了评估。 结果表明,通过内核功能的优化,KernelSSELM可以实现更高的分类精度和鲁棒性。 另外,内核SSELM用于在城市交通评估和预测系统中训练交通拥堵评估框架。
2022-01-16 10:21:52 714KB Semi-supervised ELM; Kernel function;
1