在嵌入式系统设计中经常用大容量的SDRAM,存放RTOS和数据。这时用户可以有两种选择:一种是选用合适的内存芯片自己布线,把整个SDRAM做到嵌入式系统的PCB板上,这种方法在小系统中经常采用;另一种就是选用现成的内存条(如笔记本电脑上常用的DIMM内存),现成的内存条不仅容量大,而且由于用量大,价格也相对便宜。 嵌入式系统设计中,内存的选择对于系统的性能和成本至关重要。大容量的SDRAM常常被用来存储实时操作系统(RTOS)和各类数据。设计者通常面临两种选择:一是自行选取内存芯片并进行定制化的PCB布线,这种方法适用于小型系统;二是采用现成的内存条,如DIMM内存,其优点在于容量大、价格低廉,同时减少了PCB板上的布线工作,降低了系统体积,提升了稳定性,并便于检测和替换。 为了确保不同来源和类型的内存条在嵌入式系统中都能正常工作,系统启动(BOOT)程序需要具备自动识别和配置内存的能力。这一功能基于SPD(SDRAM Serial Presence Detect Specification)规范。SPD规范详细定义了内存条的各种关键参数,包括内存大小、数据位宽、行列地址宽度、逻辑Bank和物理Bank的数量等。这些参数存储在一个两线制串行EEPROM芯片中,遵循I2C(Inter-Integrated Circuit)协议进行数据交换。 I2C协议是一种由Philips公司制定的简单两线制串行通信协议,通过一条时钟线和一条数据线实现数据的读写。数据传输时序严格,包括起始位、器件地址、应答位、数据地址、传输数据以及结束位。主控制器需按照I2C协议来读取EEPROM中的内存配置参数,理解数据存储格式及其含义。例如,PC133-333内存条的配置参数通常会存储在2Kbit的EEPROM空间内,用户可以通过读取特定地址获取内存详细信息。 以MPC824X处理器为例,这是一个由603E核心和107桥组成的嵌入式处理器,其中107桥包含SDRAM控制器、EPIC、UART和I2C控制器等模块,便于与外部设备接口。在系统上电后,需要运行内存自动识别和配置程序,该程序首先配置I2C控制器,然后通过SPD协议读取EEPROM中的内存参数,转换为内存控制器所需的配置信息。内存初始化涉及的主要参数包括行列地址宽度、逻辑Bank数量和物理Bank的大小。 自动识别和配置的过程大致如下: 1. 系统启动后,启动代码初始化I2C控制器。 2. 通过I2C协议读取内存条上的SPD EEPROM。 3. 解析读取到的数据,获取内存条的型号、容量、速度等参数。 4. 根据SPD规范将这些参数转换为适合MPC824X SDRAM控制器的配置值。 5. 配置SDRAM控制器,设置相应的地址宽度、Bank数量等。 6. 完成内存初始化,系统准备好运行RTOS和其他应用程序。 通过这种方式,嵌入式系统能够灵活适应多种内存条,提高了设计的通用性和可靠性。同时,这种自动识别和配置的方法简化了系统设计,降低了调试难度,使得嵌入式系统开发更加高效。
2025-10-04 10:23:30 208KB 嵌入式系统 自动识别
1
内容概要:本文记录了一位工程师调试Alinx公司软件无线电射频Zynq UltraScale+RFSoC FPGA开发板的经历。文章详细描述了从尝试原厂提供的demo工程开始,到解决DAC输出频率与设置不匹配问题的全过程。调试过程中,作者通过ILA抓取信号、频谱仪检测DAC输出频率、信号源输入验证ADC采集信号频谱、检查RF Data Converter配置、分析Vitis代码以及最终确认AXI总线时钟频率等一系列步骤,逐步排查并解决了问题。最终发现,问题根源在于Vitis代码中对ADC抽取和DAC插入值的配置未考虑到Sample per AXI4-Stream Cycle的因素。通过对代码进行修正,成功实现了预期的频率输出和信号采集效果。; 适合人群:具有一定硬件调试经验的FPGA开发工程师或射频工程师,尤其是对RFSoC芯片有一定了解的技术人员。; 使用场景及目标:①帮助读者理解RFSoC芯片的调试流程和常见问题;②提供详细的故障排查思路和方法,特别是针对DAC和ADC频率设置不匹配的问题;③指导读者如何正确配置Vitis代码以确保RF Data Converter的正常工作。; 阅读建议:本文提供了丰富的实战经验和具体的调试步骤,建议读者在遇到类似问题时参考本文的排查思路,并结合自己的项目环境进行实践。同时,对于文中提到的技术细节,如ILA信号抓取、频谱仪检测等,读者可以深入研究相关工具的使用方法,以便更好地应用于实际工作中。
2025-09-28 12:26:39 449KB FPGA ADC/DAC 嵌入式系统 Vitis
1
《时间触发嵌入式系统设计模式 8051系列微控制器开发可靠应用》 (Patterns for Time-Triggered Embedded Systems) (随书代码) 需要原书看一看我的其它资源
2025-09-25 09:25:17 3.42MB 操作系统
1
课件围绕嵌入式系统及应用展开,核心内容如下: 课程基本信息方面,该课程为必修课,共48学时,旷课达1/3取消考试资格;成绩由70%考试成绩与30%平时成绩(考勤、作业、课堂表现)构成,考勤和作业采用扣分制,课堂表现采用加分制。 嵌入式系统核心知识部分,定义上,其是以应用为中心、软硬可裁剪的专用计算机系统,具备专用性、嵌入性等特点;应用涵盖信息家电、军事电子、汽车电子等多领域;构成包括硬件(微处理器、存储器等)和软件(操作系统、应用程序);分类可按硬件复杂度、实时性(硬实时、软实时、非实时)、操作系统收费模式(商用型、免费型)等划分;发展趋势为网络化、普适化、服务化等。 此外,课件详细介绍了STM32 MCU的结构、存储器映像、系统时钟树,以及通用并行接口GPIO、通用同步/异步收发器接口USART的结构、寄存器功能、库函数及设计实例,包括初始化、数据收发等具体操作,强调了嵌入式系统设计中软硬件结合的实践要点。
2025-09-21 17:46:44 16.11MB
1
# 基于FreeRTOS和Jailhouse的嵌入式系统 ## 项目简介 本项目是一个基于FreeRTOS和Jailhouse的嵌入式系统,旨在将FreeRTOS实时操作系统与Jailhouse虚拟化技术结合,实现在多核ARM处理器上同时运行Linux通用操作系统和FreeRTOS硬实时操作系统。通过Jailhouse的分区虚拟化技术,两个操作系统几乎完全隔离,确保系统的实时性和稳定性。该项目目前支持在Banana Pi嵌入式板上运行。 ## 项目的主要特性和功能 1. FreeRTOS集成项目集成了FreeRTOS实时操作系统,提供了多任务处理、中断处理、实时调度等功能。 2. Jailhouse虚拟化通过Jailhouse,项目实现了操作系统的虚拟化,允许在同一硬件上运行多个独立的操作系统环境。 3. 资源隔离与共享利用Jailhouse的分区技术,实现了对硬件资源的隔离和共享,确保各个操作系统环境的安全和稳定。
2025-09-19 15:11:54 297KB
1
SDIO模式SD卡主控IP是一种基于FPGA的硬件设计技术,旨在实现嵌入式系统中SD卡的高效通信与控制。这种主控IP的开发通常涉及硬件描述语言(如Verilog或VHDL)和高级软件开发技术,以便在FPGA平台上创建一个能够与SD卡直接交互的接口模块。SDIO模式指的是SD卡的串行接口模式,这是SD卡通信的三种模式之一,另外两种为SPI模式和SD模式。 设计一个SDIO模式的SD卡主控制器通常会包含以下关键组件和功能: 1. 处理器和接口物理层(PHY):处理器负责处理SD卡通信协议,实现命令和数据的发送与接收逻辑,而PHY则负责与SD卡直接相连的物理接口部分,负责处理信号的电气特性,确保数据的正确传输。 2. 控制器组成: - 时钟分频模块:负责生成正确的SD卡时钟信号(SD_CLK),以适应SD卡的速率要求。 - CMD接口模块:包括CMD发送接口模块和CMD接收接口模块。CMD发送接口模块用于发送和接收SD卡命令序列,而CMD接收接口模块用于接收来自SD卡的命令响应。 - DATA接口模块:包括DATA发送接口模块和DATA接收接口模块。发送模块负责从数据缓存中读取数据并写入SD卡,接收模块则负责从SD卡读取数据并存入数据缓存。 - 数据缓存模块:作为一个双端口的RAM,一端连接处理器,另一端连接控制器,用于暂存处理器与SD卡之间的数据交换。 3. 接口说明:详细列出了控制器与外部交互所需的信号,包括时钟信号、复位信号、SD卡时钟分频参数、CMD和DATA接口信号等。 4. 控制器仿真:仿真通常分为激励信号生成、主控制器行为模拟和SD卡从设备模拟三个部分,确保控制器设计能够正确响应外部请求并按协议与SD卡通信。 SDIO模式SD卡主控IP的开发和应用对嵌入式系统工程师提出了要求,他们不仅需要具备硬件设计知识,还必须熟悉SD卡的通信协议和FPGA的编程。这样的技术在数据采集、多媒体播放器、移动存储设备等领域有着广泛的应用。 此外,SDIO模式下的SD卡主控IP设计需要考虑多方面因素,比如时序的精确控制、数据传输的稳定性和高速性,以及系统的低功耗和高效率。随着技术的演进,这类主控IP也越来越倾向于采用更先进的FPGA芯片和设计工具,以期达到更高的性能和更低的成本。 考虑到开发难度和设计复杂性,团队往往需要利用现有的IP核,如MicroBlaze处理器,简化开发流程。此外,为了缩短研发周期和降低风险,采用模块化的开发和测试方法也是业界普遍采纳的策略。
2025-09-19 14:21:25 540KB FPGA SDIO 嵌入式系统 硬件设计
1
内容概要:本文详细介绍了STM32F107单片机驱动DP83848以太网芯片的方法,涵盖了从硬件连接、寄存器配置到具体代码实现的全过程。首先,文中强调了硬件连接特别是RMII接口的正确配置,指出REF_CLK需要连接50MHz时钟源。接着,提供了底层配置的关键代码片段,如使能GPIO和MAC时钟、配置RMII接口引脚等。然后,深入探讨了PHY寄存器的操作方法,推荐使用状态机轮询而非中断方式,并解释了时钟分频系数的选择。随后,重点讲解了配置PHY工作模式的具体步骤,包括自动协商和强制设置双工模式。此外,还提到了接收数据包处理的优化方法,如使用DMA双缓冲以及解决接收缓冲区不足的问题。最后,提供了一个实用的链路状态检测函数,确保网络连接的稳定性。 适合人群:从事嵌入式系统开发的技术人员,尤其是对STM32系列单片机和以太网通信感兴趣的开发者。 使用场景及目标:帮助开发者快速掌握STM32F107单片机与DP83848以太网芯片的驱动配置方法,提高开发效率,减少调试时间,适用于嵌入式系统的网络通信模块开发。 其他说明:文中提供的代码示例和配置建议基于实际开发经验,能够有效避免常见的配置错误和技术难题。
2025-09-16 13:58:17 1.69MB
1
内容概要:本文介绍了基于UDS(统一诊断服务)协议的STM32F103在线升级解决方案,详细阐述了系统的架构和技术特点。系统架构分为底层驱动、应用层和上位机软件三个部分。底层驱动负责与STM32F103微控制器通信,包括CAN通信和Flash存储;应用层实现了UDS协议的各种服务和在线升级功能;上位机软件用于发送固件升级请求并提供调试工具。技术特点包括开源性、兼容多种CAN通信标准、支持在线升级、确保升级过程的安全性以及高度的灵活性。文中还提到了开源代码的获取途径和提供的测试板及上位机软件,便于用户进行定制和二次开发。 适合人群:嵌入式系统开发者、汽车电子工程师、对在线升级感兴趣的硬件爱好者。 使用场景及目标:适用于需要实现远程固件升级和维护的项目,特别是涉及汽车电子系统的应用场景。目标是帮助用户理解和实现基于UDS协议的在线升级功能。 其他说明:本文不仅提供了理论讲解,还给出了实际的开源代码和测试环境,使读者能够快速上手并进行实践。
2025-09-16 13:07:12 6.04MB 嵌入式系统 在线升级
1
本书深入讲解如何在资源受限的微控制器上部署机器学习模型,涵盖TensorFlow Lite、Edge Impulse和TVM等主流框架。通过Arduino Nano、Raspberry Pi Pico和SparkFun Artemis Nano等开发板,结合传感器数据实现端到端tinyML项目。内容包括模型训练、量化、优化及在实际硬件上的部署流程,适合希望将AI应用于物联网边缘设备的开发者。书中还介绍了关键词识别、音乐流派分类、物体检测等真实案例,帮助读者掌握低功耗、高性能的嵌入式AI解决方案。配套代码和数据集均开源,便于快速上手与扩展。
2025-09-16 01:23:18 42.77MB 机器学习 嵌入式系统
1
本文介绍了一种基于AT91RM9200的嵌入式网络摄像机设计方案。该系统以嵌入式Linux 作为操作系统, 采用MPEG-4 的专用编码芯片对采集到的数字视频进行压缩编码, 生成MPEG- 4 码流。MPEG- 4 码流经过AT91RM9200 控制器外接的网络芯片被输送到PC 机。PC 机端通过内嵌MPEG- 4 解压插件的IE 浏览器来播放视频和控制网络摄像机的状态变化。 【嵌入式系统】 嵌入式系统是专为特定应用而设计的计算机系统,它们通常集成在设备中,执行特定的功能。在这个基于AT91RM9200的嵌入式网络摄像机设计中,嵌入式系统扮演了核心角色,负责管理和协调各个硬件模块的运作。 【AT91RM9200】 AT91RM9200是由Atmel公司生产的基于ARM920T内核的32位微控制器,具有高性能和低功耗的特点。它内置180MHz的CPU,适用于需要快速处理和高效能的应用,如本设计中的网络摄像机。该微控制器通过SPI、SDRAM控制器、USART和以太网控制器来控制DataFlash、SDRAM、串口芯片和网络芯片,实现了系统的集成化管理。 【嵌入式Linux】 嵌入式Linux作为操作系统的选取,为该网络摄像机提供了稳定、可扩展的软件平台。Linux内核被烧录到DataFlash中,系统启动时将其加载到SDRAM中运行。Linux支持网络协议栈,能有效地处理网络传输,同时也为开发和移植各种应用程序提供了便利。 【MPEG-4编码】 MPEG-4是一种高效的视频压缩标准,能有效减小视频数据的存储和传输需求。在该设计中,采用专用的MPEG-4编码芯片(例如MPG440)对采集的视频流进行压缩,生成的MPEG-4码流通过网络传输至PC端。 【网络接口模块】 网络接口模块由AT91RM9200的以太网控制器和外部网络芯片组成,它们负责将MPEG-4码流发送到网络,并接收控制指令。在PC端,用户通过内置MPEG-4解码插件的IE浏览器可以实时观看视频并控制摄像机状态。 【硬件设计】 硬件设计包括微控制器模块、压缩编码模块、网络接口模块和相机控制模块。每个模块都有特定的芯片和组件,如TVP5150用于视频采集,MPG440用于压缩编码,串口芯片用于相机控制,以及DataFlash和SDRAM用于存储和运行系统。 【软件设计】 软件设计涵盖了嵌入式Linux系统移植、MPEG-4压缩编码模块、CGI控制程序和MPEG-4解码程序。移植的Linux系统负责整体调度,压缩编码模块处理视频流,CGI程序实现摄像机控制,解码程序则处理网络接收的MPEG-4数据流。 总结来说,这个基于AT91RM9200的嵌入式网络摄像机设计结合了嵌入式Linux的灵活性和MPEG-4压缩的高效性,通过精心设计的硬件和软件架构,实现了视频的实时采集、压缩、网络传输和远程控制,是现代物联网和安防领域的重要应用实例。
2025-09-13 11:28:48 160KB 嵌入式系统 AT91RM9200 技术应用
1