1.动态规划、贝尔曼方程、最优值函数、值与策略迭代、最短路径、马尔可夫决策过程。2. 哈密顿-雅可比-贝尔曼方程,近似方法,nite和nite hori- zon公式,随机微积分基础。3.庞特利亚金的极大原理,ODE和梯度下降法,与经典力学的关系。4. 线性二次高斯控制,黎卡提方程,非线性问题的迭代线性逼近。5. 最优递推估计,卡尔曼滤波,扎卡方程。6. 最优控制与最优估计的对偶性(含新结果)。7. 电机控制中的最优模型,是一个很有前途的研究方向。
2021-08-01 20:02:13 223KB 最优控制理论
1
Reinforcement Learning-Theory and Algorithms_2020.pdf
2021-08-01 15:55:54 952KB reinforcement learning
1
这是关于组合优化算法的电子书,高清,最新版本,经典著作,英文版
2021-07-31 20:03:40 7.47MB Combinatoria
1
abaqus的理论手册,为利用abaqus软件进行有限元分析提供理论基础。
2021-07-31 10:36:42 69.12MB abaqus 理论手册
1
[中文版] Elementary Set Theory集合论初步
2021-07-31 10:18:10 2.68MB [中文版] Elementary Set Theory集合论初步
1
香农经典论文:通信的数学原理(A Mathematical Theory of Communication)
2021-07-30 16:24:49 401KB Shannon 通信
1
Graphics Shaders Theory and Practice, Second Edition.
2021-07-30 12:25:57 11.93MB Graphics Shaders Theory and
1
解题手册对于an introduction to game theory. 完全班
2021-07-29 21:59:42 445KB solution
1
显式非线性模型预测控制
2021-07-29 16:40:12 5.82MB 模型预测控制
1
The aim of this book is to discuss the fundamental ideas which lie behind the statistical theory of learning and generalization. It considers learning as a general problem of function estimation based on empirical data. Omitting proofs and technical details, the author concentrates on discussing the main results of learning theory and their connections to fundamental problems in statistics. This second edition contains three new chapters devoted to further development of the learning theory and SVM techniques. Written in a readable and concise style, the book is intended for statisticians, mathematicians, physicists, and computer scientists.
2021-07-28 18:54:52 9.64MB 统计学习
1