单机搭建Android(解决 fatal: Cannot get https://gerrit.googlesource.com/git-repo/clone.bundle fatal: error [Errno 101] Network is unreachable ),具体操作请阅readme.txt
2021-12-13 14:54:00 10KB Android Network is unreachable
1
借助生成对抗网络实现无人监督的深度图像增强 IEEE图像处理事务(T-IP) 1 ,1 ,1 ,2 , 1 [ ] [ ] 1香港城市大学, 2美团集团 介绍 该网站共享IEEE图像处理事务(T-IP),第一卷,“通过生成的对抗网络实现无监督的深度图像增强”的代码。 2020年9月29日,第9140-9151页。 抽象的 对于公众而言,提高图像的美学质量是充满挑战和渴望的。 为了解决这个问题,大多数现有算法都是基于监督学习方法来学习用于配对数据的自动照片增强器,该照片增强器由低质量的照片和相应的专家修饰版本组成。 但是,专家修饰的照片的样式和特征可能无法满足一般用户的需求或偏好。 在本文中,我们提出了一种无监督的图像增强生成对抗网络(UEGAN),该网络以无监督的方式从一组具有所需特征的图像中学习相应的图像到图像的映射,而不是学习大量的成对图像。 所提出的模型基于单个深层GAN,该
1
matlab的欧拉方法代码神经元网络模型 动态耦合激发大脑中神经元的模型以产生复杂的网络同步 该项目提供了Matlab代码来模拟以下情况: 一个发射神经元细胞,使用三种不同的模型。 x个激发神经元的网络,使用静态耦合矩阵耦合在一起。 x个激发神经元的网络,使用基于神经元细胞之间突触模型的动态耦合功能耦合在一起。 在single_neuron_models目录中,运行着一些程序来模拟单个激发神经元的行为。每个程序的顶部都有一些示例运行。 OneNeuronTau.m:基于Tau常数的简单模型 OneNeuronIzhInF.m:伊兹凯维奇着名的“整合并发射”神经元模型 OneNeuronExpInF.m:更复杂的指数神经元模型 在Neuron_network_models目录中,运行程序“ Neuron Simulations”以打开一个GUI,该GUI允许配置和显示神经元网络。 NeuronSimulations.m:包含所有不同模型和行为的GUI NeuronNetworkTau.m:对通过耦合矩阵连接在一起的“ Tau激发”神经元网络进行建模。 使用正向Euler方法计算每个神经元
2021-12-12 12:38:03 461KB 系统开源
1
官方离线安装包,亲测可用
2021-12-11 22:01:44 349KB rpm
官方离线安装包,亲测可用
2021-12-11 22:01:44 219KB rpm
官方离线安装包,亲测可用
2021-12-11 22:01:43 369KB rpm
官方离线安装包,亲测可用
2021-12-11 22:01:43 370KB rpm
官方离线安装包,亲测可用
2021-12-11 22:01:42 371KB rpm
官方离线安装包,亲测可用
2021-12-11 22:01:42 372KB rpm
官方离线安装包,亲测可用
2021-12-11 22:01:42 373KB rpm