Python Data Science Handbook Essential Tools for Working with Data
2019-12-21 20:20:08 24.24MB Python Data Science Handbook
1
Computer science distilled: learn the art of solving computational problems / Wladston Viana Ferreira Filho. — 1st ed.
2019-12-21 20:20:08 6.82MB Computer science distilled com4tional
1
Terahertz 是一门新兴的交叉学科,希望本书能够将您带入Terahertz的美妙世界!
2019-12-21 20:17:29 9.86MB Terahertz
1
My name is Frank Kane. I spent nine years at amazon.com and imdb.com, wrangling millions of customer ratings and customer transactions to produce things such as personalized recommendations for movies and products and "people who bought this also bought." I tell you, I wish we had Apache Spark back
2019-12-21 20:13:06 17.56MB python machingLearn Recommendati
1
Science》杂志-机器学习究竟将如何影响人类未来的工作 - 中文版 + 英文原版,帮助大家对于机器学习最新的发展趋势进行了解
2019-12-21 20:06:56 1.91MB 机器学习
1
network science Albert-László Barabási new book
2019-12-21 20:01:29 16.64MB complex network
1
Need to turn your skills at programming into effective data science skills? Principles of Data Science is created to help you join the dots between mathematics, programming, and business analysis. With this book, you’ll feel confident about asking—and answering—complex and sophisticated questions of your data to move from abstract and raw statistics to actionable ideas. With a unique approach that bridges the gap between mathematics and computer science, this books takes you through the entire data science pipeline. Beginning with cleaning and preparing data, and effective data mining strategies and techniques, you’ll move on to build a comprehensive picture of how every piece of the data science puzzle fits together. Learn the fundamentals of computational mathematics and statistics, as well as some pseudocode being used today by data scientists and analysts. You’ll get to grips with machine learning, discover the statistical models that help you take control and navigate even the densest datasets, and find out how to create powerful visualizations that communicate what your data means.
2019-12-21 19:57:36 11.42MB 数据 高清文字版 英文
1
R Programming for Data Science 数据分析计算的R编程 高清目录 pdf 面子书
2019-12-21 19:57:33 10.52MB 数据分析计算
1
Word中LNCS格式模板使用教程 word中Springger proceedings macros
2019-12-21 19:57:02 560KB LNCS, springer
1
Contents Preface xv Prologue: A machine learning sampler 1 1 The ingredients of machine learning 13 1.1 Tasks: the problems that can be solved with machine learning . . . . . . . 14 Looking for structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Evaluating performance on a task . . . . . . . . . . . . . . . . . . . . . . . . 18 1.2 Models: the output of machine learning . . . . . . . . . . . . . . . . . . . . 20 Geometric models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 Probabilistic models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Logical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 Grouping and grading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 1.3 Features: the workhorses of machine learning . . . . . . . . . . . . . . . . 38 Two uses of features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 Feature construction and transformation . . . . . . . . . . . . . . . . . . . 41 Interaction between features . . . . . . . . . . . . . . . . . . . . . . . . . . 44 1.4 Summary and outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 What you’ll find in the rest of the book . . . . . . . . . . . . . . . . . . . . . 48 2 Binary classification and related tasks 49 2.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 ixx Contents Assessing classification performance . . . . . . . . . . . . . . . . . . . . . . 53 Visualising classification performance . . . . . . . . . . . . . . . . . . . . . 58 2.2 Scoring and ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 Assessing and visualising ranking performance . . . . . . . . . . . . . . . . 63 Turning rankers into classifiers . . . . . . . . . . . . . . . . . . . . . . . . . 69 2.3 Class probability estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 Assessing class probability estimates . .
2019-12-21 19:43:12 9.49MB 机器学习 machine learning
1