IMU-PLOS_LSTM 使用LSTM网络通过PLOS训练IMU数据-这是自定义LSTM-RNN。 在这里,每个示例都应写入到csv中。 一个csv的训练示例包括[时间步数(窗口大小*(类数+功能昏暗))]
2021-12-14 10:13:59 22.72MB JupyterNotebook
1
Time series forecasting using LSTM.
2021-12-11 21:21:49 4KB ML
1
假新闻检测 参考相关作品,并根据越南文文章建立基于LSTM和CNN的虚假新闻检测模型。
2021-12-08 17:16:32 164KB JupyterNotebook
1
今天小编就为大家分享一篇pytorch 利用lstm做mnist手写数字识别分类的实例,具有很好的参考价值,希望对大家有所帮助。一起跟随小编过来看看吧
2021-12-07 17:20:51 41KB pytorch lstm mnist 手写
1
事前预测和识别可疑活动是非常有益的,因为它可以增强对视频监控摄像机的保护。 在执行之前检测和预测人类的动作具有多种用途,例如自动机器人,监视和医疗保健。 本文的主要重点是监视视频中人为行为的自动识别。 3DCNN(3维卷积神经网络)基于3D卷积,在那里捕获了多个相邻帧中编码的运动信息。 3DCNN与Long short team memory(LSTM)和双向LSTM相结合,可根据对视频流中事件的以往观察来预测异常事件。 可以看出,与带有双向LSTM的3DCNN相比,带有LSTM的3DCNN导致精度提高。 实验是在UCF犯罪数据集上进行的。
2021-12-07 16:08:27 649KB 3DCNN Bi-Directional LSTM LSTM
1
基于LSTM的流量预测 该项目旨在通过的前端,将LSTM用于流量预测。 超参数优化用于查找网络的最佳参数集。 用法 跑步: pip install -r requirements.txt 然后编辑以便它使用您自己的网络参数。 它将尝试将超参数结果存储在mongodb中。 您可以使用查看它们。 请记住,这仅用于实验,不适用于生产。 使用以下命令运行: python main.pymain.py CSV格式应为以下格式: timestamp,16,17,18,19,20,21 2011-12-31 23:55:00,4,6,8,13,3,0 2012-01-01 00:00:00,
2021-12-06 17:31:55 20KB experimental lstm hyperopt traffic-prediction
1
使用LSTM aka语言建模进行句子预测 LSTM文字按字生成。 用于根据输入的单词或句子生成多个句子建议。 有关项目详细信息的更多信息,请参见与此项目相关联的。 响应:仅生成1个私钥,即生成描述的单词数 Input: hydrant requires repair Output: hydrant requires repair is not working Input: describe the problem Output: describe the problem please attend to Input: door and window Output: door and window in the kitchen is not working in the Input: machine is leaking Output: machine is leaking and need
2021-12-06 14:57:31 41.05MB Python
1
流量预测 拟议的概念证明,用于解决智​​能城市的交通拥堵和预测问题。 二手-LSTM(用于将来的预测)+ CNN(用于检测流量密度)+实时推文将所有这三种方法结合起来以产生流量拥塞因子(TCF),并在将来的任何时候使用Google API提出基于此的路由建议。 内容 - 公用文件夹- 截至9月18日的TCF数据 LSTM预计到9月18日的时间 src文件夹-React应用程序 实用程序文件- tweets_realtime.py-删除有关流量的地理位置标记的tweets tempserver-临时服务器,将所有从抓取中获得的推文排队,并充当React应用程序的API。 屏幕截图 注意:代码清理仍在进行中,该项目是为黑客马拉松而设计的
2021-12-06 09:32:53 1.79MB HTML
1
多类别文字分类 在Tensorflow中实现四个神经网络,以解决多类文本分类问题。 楷模 LSTM分类器。 参见rnn_classifier.py 双向LSTM分类器。 参见rnn_classifier.py CNN分类器。 参见cnn_classifier.py。 参考: 。 C-LSTM分类器。 请参阅clstm_classifier.py。 参考:。 资料格式 训练数据应存储在csv文件中。 文件的第一行应为[“ label”,“ content”]或[“ content”,“ label”]。 要求 Python 3.5或3.6 Tensorflow> = 1.4.0 脾气暴躁的 火车 运行train.py训练模型。 参数: python train.py --help optional arguments: -h, --help show
2021-12-05 15:41:29 7.46MB nlp deep-learning text-classification cnn-lstm
1
机场是一个空地交通系统,机场地面交通的预测不同于一般城市道路具有其特殊性。本研究以北京首都国际机场为研究对象,基于2016年8月1日-2017年7月31日空地交通小时数据,预测辖区内58条道路小时级别的拥堵延时指数,为相关部门的管理提供依据。与传统的基于自身序列的预测模型相比,本研究将航空因素引入地面交通拥堵预测模型中,结果显示航空因素对于机场地面交通的预测具有重要影响,证实了机场地面交通预测的特殊性。与线性模型ARIMA和VAR模型相比,深度学习算法LSTM模型具有更好的预测精度。
2021-12-04 10:49:32 1.57MB LSTM模型 交通拥堵
1