CLUEDatasetSearch 中英文NLP数据集。可以点击。 您可以通过贡献你的力量。上传五个或以上数据集信息并审核通过后,该同学可以作为项目贡献者,并显示出来。 如果数据集有问题,欢迎提出问题。 所有数据集均压缩网络,只做整理供大家提取方便,如果有缺陷等问题,请及时联系我们删除。 内尔 ID 标题 更新日期 数据集提供者 许可 说明 关键字 类别 论文地址 备注 1个 2017年5月 北京极目云健康科技有限公司 数据统计其云医院平台的真实电子病历数据,共计800条(个别病人单次就诊记录),经脱敏处理 电子病历 命名实体识别 \ 中文 2 2018年 医渡云(北京)技术有限公司 CCKS2018的电子病历命名实体识别的评估任务提供了600份标注好的电子病历文本,共需识别含解剖部位,独立症状,症状描述,手术和药物五类实体 电子病历 命名实体识别 \ 中文 3 \ MSRA 数据抽样MSRA,标注形式为BIO,共有46365条语料 姆斯拉 命名实体识别 \ 中文 4 1998年1月 人民日报 数据来源为98年人民日报,标注形式为BIO,共有23061条语料 98人民日报 命名实体识
2022-02-24 08:45:26 695KB nlp qa sentiment-analysis text-classification
1
骇客深度学习:使用TensorFlow 2和Keras和Python的机器学习教程(包括Jupyter笔记本)-(LSTM,超电流表调整,数据预处理,偏差方差折衷,异常检测,自动编码器,时间序列预测,对象检测,情感分析,使用BERT进行意图识别)
1
亚马逊上的Analytics(分析)评论 数据分析考试最终项目,。 由 , , 。 探索,情感分析,主题分析(LDA)和VueJS Web应用程序,公开受过训练的模型。 (网络演示部署) 勘探 网络演示 跑 设置一个Python虚拟环境并安装所需的软件包 cd scripts python3 -m venv . source bin/activate pip3 install -r requirements.txt python3 -m spacy download en (可选)安装ipynb内核以使用venv软件包 pip3 install --user ipykernel
1
使用ConvNet的Twitter情绪分析 一个工具 预测推文的情绪“积极性” 如何使用它? >> from sentiment import sentiment_score >> print sentiment_score(u"I love you") 0.9999 它返回的情绪索引范围为0(负情绪)到1(正情绪)。 在线演示 预测单个推文的情绪“积极性” 概述的“积极性” 点击 算法 有关该算法的更多信息,请参阅。 技术选择 作为Web框架 作为神经网络训练的实现 作为神经网络分类(在线版本)的实现 训练技巧 扇入,扇出初始化 退出 阿达达 贡献者 韩晓和姚璐
1
Sentiment Analysis and Opinion Mining-Liu bing的书
2022-01-22 21:53:16 1.12MB Sentiment Analysis Opinion Mining
1
《Sentiment Analysis and Opinion Mining》,刘冰2012年的书,M&C出版社出版。没在网上找到过免费的,这书很贵的好不好,30美刀…… 话说我这不涉及侵权吧……
2022-01-05 18:22:40 1.74MB 情感分析 评论挖掘 数据挖掘 DataMining
1
Twitter情绪可视化 一个网络应用程序,它使用来自Twitter的数据以及情感分析和情感检测相结合的方式来创建一系列数据可视化效果,以说明快乐和不快乐的位置,主题和时间。 介绍 该项目旨在使Twitter数据更易于理解。 它流式传输实时tweet,或者可以获取有关特定主题或关键字的tweet-然后使用自定义编写的情感分析算法分析此数据,并最终通过一系列动态D3.js数据可视化显示结果。 该应用程序的目的是允许在情绪与其他因素之间找到趋势,例如地理位置,一天中的时间,其他主题... 从分析营销活动的有效性到比较两个竞争主题,它具有广泛的用途。 在阅读有关该应用程序的更多信息。 该应
2021-12-29 22:29:58 17.95MB twitter sentiment-analysis data-visualisation trends
1
Customer_satisfaction_Analysis 结果整合 Demo 演示 基于用户 UGC 的在线民宿满意度挖掘,负责数据采集、主题抽取、情感分析等任务。开发的目的是克服用户打分和评论不一致,实现了在线评论采集和用户满意度分析。 主要功能包括在线原始评论采集、主题聚类、评论情感分析与结果可视化展示等四个模块,如下所示。 提取后的民宿地址和在线评论等信息如下。 搭建了百度地图 POI 查询入口,可以进行自动化的批量查询地理信息。 通过高频词可视化展示,归纳出评论主题。 构建了基于在线民宿语料的 LDA 自动化主题聚类模型,利用主题中心词能找出对应的主题属性字典,并使用用户打分作为标注,然后通过多种分类模型,选用最优模型对提出的评价主体 进行情感分析,针对主题属性表进行主题提取后的文本进行情感分析,分别得出当前主题对应的情感趋势,横坐标为所有关于主题为“环境”的情感得分,纵坐标为
1
财务情绪分析 进行实验以训练我自己的Word2vec嵌入,以便使用注意力模型进行转移学习。 (自然语言处理和深度学习)涉及对斯坦福问题解答数据集和迁移学习的实验。 这些实验背后的想法是将转移学习用于具有深度神经网络和注意力模型的无监督文本数据。 我训练有素的word2vec嵌入的代码将在以后添加库:Keras,python,pandas,nltk Tensorflow和一些sci-kit在这里和那里学习
2021-12-19 03:46:12 120KB JupyterNotebook
1
情感分析 受过Python的情感分析,并接受过Amazon西班牙评论的西班牙语培训。 请参阅我的博客以获取详细信息: 模型训练: : 应用于网页的模型: :
1