模型预测控制经典英文教程,里面带matlab 程序
2022-03-19 13:23:00 5MB MPC Matlab model Design
1
NASA-Turbofan预测性维护 Github无法渲染笔记本中的某些图形,因为超出了框架数量 为了查看完整的笔记本,请复制此链接在此网站中,然后单击带有'的文件。 ipynb'扩展并等待其呈现(大约需要10秒) 创建了一个模型,该模型可用作估算发动机RUL(剩余使用寿命)的工具,其精度为98% 该模型预测引擎的RUL并输出值1或0 “ 1”表示发动机接近维修时间,因此需要检查,“ 0”表示可以安全进行 通过Cycle设计的功能,并生成了新变量来标记引擎 可视化的高级图形和轨迹使用绘图 使用过的lightgbm和xgboost库进行有效的模型构建 使用RandomizedSearchCV优化分类模型,对参数进行超调以获得最合适的模型 本项目中使用的代码和资源的说明 ** Python版本:** 3.8 **软件包:**熊猫,numpy,seaborn,matplotlib,plot
2022-03-01 15:48:47 3.96MB JupyterNotebook
1
针对具有避免冲突的多智能体系统的跟踪和形成问题,提出了一种同步分布式模型预测控制算法。 我们考虑所有智能体的确定性,线性,时不变和齐次动力学。 在同步DMPC中,所有代理都利用邻居的假定预测信息同步解决其优化问题,以获得当前的最佳输入。 考虑到每个代理的假设和实际预测信息之间存在不确定的偏差,我们有助于设计一个与偏差有关的避免碰撞约束,该约束被施加在单个优化问题中,以确保每个代理的安全性。 我们通过设计二范数形式的时变相容性约束来约束不确定性偏差,该约束被施加在个体优化问题中,在避免碰撞和指数稳定性方面都起着重要作用。 通过所提出的算法,证明了递归可行性,指数稳定性和避免碰撞的保证。 提供了一个仿真示例,以说明此方法的实用性和有效性。
2022-02-24 00:12:32 857KB distributed model predictive control
1
利用二次规划完整的解决了带有约束问题的MPC
2022-02-11 23:03:08 1.62MB model predictive control with
1
预期寿命 过去已经对影响预期寿命的几个因素进行了研究。 以前从未考虑过使用某些功能根据国家状况(发展/发达,GDP,百分比支出),​​生活方式(BMI,酒精,教育,资源收入构成),疾病(艾滋病毒/艾滋病)预测所有国家/地区预期寿命的准确性艾滋病,白喉等) 数据集已从收集。 我已经在R上完成了这个项目,并且在Tableau上创建了不同类型的有意义的可视化。 清理数据,可视化数据,缩放比例的特征,进行统计分析,创建相关矩阵,检查变量之间如何正/负相关以及它们之间的相关性如何,为每个特征创建简单的(一个变量)回归模型并比较p值使用多变量线性回归来检查冗余预测变量,使用vif来量化共线性度,检查条件,这些清理后的数据集是否适合线性回归模型,生成多元回归模型,同时使用AIC和向后消除预测最准确模型的方法以及未来的预测方法-该项目的一部分
2022-01-11 20:27:46 354KB data-analysis tableau predictive-analytics R
1
Python: Advanced Predictive Analytics: Gain practical insights by exploiting data in your business to build advanced predictive modeling applications Python: Advanced Predictive Analytics: Gain practical insights by exploiting data in your business to build advanced predictive modeling applications By 作者: Ashish Kumar – Joseph Babcock ISBN-10 书号: 1788992369 ISBN-13 书号: 9781788992367 Release 出版日期: 2017-12-27 pages 页数: (660 ) $99.99 Python: Advanced Predictive Analytics: Gain practical insights by exploiting data in your business to build advanced predictive modeling applications Gain practical insights by exploiting data in your business to build advanced predictive modeling applications Social Media and the Internet of Things have resulted in an avalanche of data. Data is powerful but not in its raw form; it needs to be processed and modeled, and Python is one of the most robust tools out there to do so. It has an array of packages for predictive modeling and a suite of IDEs to choose from. Using the Python programming language, analysts can use these sophisticated methods to build scalable analytic applications. This book is your guide to getting started with predictive analytics using Python. You’ll balance both statistical and mathematical concepts, and implement them in Python using libraries such as pandas, scikit-learn, and NumPy. Through case studies and code examples using popular open-source Python libraries, this book illustrates the complete development process for analytic applications. Covering a wide range of algorithms for classification, regression, clustering, as well as cutting-edge techniques such as deep learning, this book illustrates explains how these methods work. You will learn to choose the right approach for your problem and how to develop engaging visualizations to bring to life the insights of predictive modeling. Finally, you will learn best practices in predictive modeling, as well as the different applications of predictive modeling in the modern world. The course provides you with highly practical content from the following Packt books: Learning Predictive Analytics with Python Mastering Predictive Analytics with Python What You Will Learn Understand the statistical and mathematical concepts behind predictive analytics algorithms and implement them using Python libraries Get to know various methods for importing, cleaning, sub-setting, merging, joining, concatenating, exploring, grouping, and plotting data with pandas and NumPy Master the use of Python notebooks for exploratory data analysis and rapid prototyping Get to grips with applying regression, classification, clustering, and deep learning algorithms Discover advanced methods to analyze structured and unstructured data Visualize the performance of models and the insights they produce Ensure the robustness of your analytic applications by mastering the best practices of predictive analysis
2021-12-25 22:49:17 20.59MB python 预测
1
driving-behavior-risk-prediction. 2018平安产险数据建模大赛 驾驶行为预测驾驶风险 Fork或借鉴请注明出处  . Thx 比赛链接 RANK 第五周 第六周 相关文章 License Copyright (c) . All rights reserved. Licensed under the License.
2021-12-19 13:25:04 4.81MB competition python3 xgboost predictive-modeling
1
本文为模型预测控制(MPC)的理论和设计提供全面而基本的处理方法,强烈推荐作为入门模型预测控制书籍。
2021-12-17 01:18:19 3.03MB predictive model design
1
模型预测控制(MPC)是一类特殊的控制。它的当前控制动作是在每一个采样瞬间通过求解一个有限时域开环最优控制问题而获得。过程的当前状态作为最优控制问题的初始状态,解得的最优控制序列只实施第一个控制作用。这是它与那些使用预先计算控制律的算法的最大不同。本质上模型预测控制求解一个开环最优控制问题。它的思想与具体的模型无关,但是实现则与模型有关。
2021-12-09 10:53:50 8.17MB 模型预测控制
1