Python 深度学习 北京空气质量LSTM时序预测 tensorflow自定义激活函数hard tanh keras tensorflow backend操作 2010.1.2-2014.12.31北京空气雾霾pm2.5 pm10数据集 折线图loss下降趋势预测值真实值对比图 label encoder one hot min max scale 标准化 numpy pandas matplotlib jupyter notebook 人工智能 机器学习 深度学习 神经网络 数据分析 数据挖掘
2024-04-27 15:13:31 453KB Python 深度学习 tensorflow LSTM
1
Python基于深度学习的交通流预测(SAEs、LSTM、GRU) Requirement Python 3.6 Tensorflow-gpu 1.5.0 Keras 2.1.3 scikit-learn 0.19 Train the model Run command below to train the model: python train.py --model model_name You can choose "lstm", "gru" or "saes" as arguments. The .h5 weight file was saved at model folder. Experiment Data are obtained from the Caltrans Performance Measurement System (PeMS). Data are collected in real-time from individual detectors spanning the freeway system across all major metropolitan
2024-04-15 16:40:21 6.42MB LSTM
1
1.本资源包含了MACD,KDJ,LSTM,MA等多种技术指标进行股票预测,形成完整的k线预测图。 2.所有数据都是真实可靠 3.代码简洁易懂,开发者可以在此基础上二次开发 4
2024-04-10 09:49:36 15KB python lstm
1
pytorch搭建CNN+LSTM+Attention网络实现行车速度预测项目代码加数据,适合初学者,代码结构清晰
2024-04-09 21:08:55 1.19MB pytorch pytorch 网络 网络
1
基于卷积神经网络-长短期记忆网络(CNN-LSTM)分类预测,matlab代码,要求2019及以上版本。 多特征输入单输出的二分类及多分类模型。程序内注释详细,直接替换数据就可以用。 程序语言为matlab,程序可出分类效果图,迭代优化图,混淆矩阵图。
2024-04-09 16:35:48 158KB 网络 网络 matlab lstm
1
长短期记忆网络(Long Short-Term Memory, LSTM)是一种递归神经网络(Recurrent Neural Network, RNN)的变体,专门用于处理和预测序列数据。它通过引入门控机制和记忆细胞,能够更好地捕捉序列中的长期依赖关系,并解决传统RNN中的梯度消失或爆炸问题。
2024-04-09 16:35:28 2KB pytorch pytorch lstm NLP
1
使用卷积加循环神经网络加注意力机制进行时间序列预测。 适用于不懂时间序列预测流程的研究小白,使用这个资源能够很好的理解时间序列预测的整个流程。熟悉数据在网络中的形状变换。代码拿来修改一下数据集路径和些许参数即可运行。
2024-04-08 09:17:32 425KB lstm 数据集
1
在colab环境下实现,如果想使用cpu的话 自己换一下device的代码就可以了
2024-04-07 17:22:27 1.05MB pytorch pytorch lstm
1
Python实现LSTM长短期记忆神经网络时间序列预测(完整源码) Python实现LSTM长短期记忆神经网络时间序列预测(完整源码) Python实现LSTM长短期记忆神经网络时间序列预测(完整源码) Python实现LSTM长短期记忆神经网络时间序列预测(完整源码)
2024-04-04 09:49:24 255KB python lstm 神经网络
1
使用LSTM实现C-MAPSS数据集里面的剩余寿命预测(Pytorch) 每轮训练后测试集误差 score:445.4610 334.5140 358.6489 365.9250 331.4520 283.3463 460.4766 314.7196 325.5950 452.3746 RMSE:16.3614 14.8254 14.9796 15.5157 14.7853 14.2053 16.2834 14.6757 14.7481 15.8802 由实验结果可知,MS-BLSTM 的预测误差均为最低水平,并且实际训练过程中收敛速度较快,涡扇发动机接近损坏时预测准确率较高。与传统机器学习方法相比,深度学习模型如CNN 和 LSTM的预测误差相对较小。而本文所提的 MS-BLSTM 混合深度学习预测模型进一步提高了 RUL 预测精度,,这得益于 MS-BLSTM 混合模型有效利用了时间段内传感器测量值的均值和方差与RUL的相关性,并使用 BLSTM学习历史数据和未来数据的长程依赖。本文所提的 MS-BLSTM 剩余使用寿命预测模型预测精度高,可有力支撑涡扇发动机的健康管理与运维决策。
2024-04-03 15:06:07 13.62MB pytorch pytorch lstm 数据集
1