针对现有井下无线收发器信号传输距离短、功耗大、抗干扰能力差等缺陷,设计了一种基于WiFi技术的矿井信号收发器。该信号收发器采用ARM9嵌入式芯片及WinCE操作系统,与井下采煤机监控模块建立Modbus协议的数据通信,通过RS485串口接收采煤机运行参数;在WiFi网络内与井下无线接入点建立支持TCP/IP协议的无线连接,并与井上监控中心服务器通信,完成对采煤机运行状态的监控。应用表明,该信号收发器具有较高的实时传输性能,且功耗低,抗干扰能力强。
1
在本文中,我们将深入探讨如何使用LabVIEW(Laboratory Virtual Instrument Engineering Workbench)进行基于声卡的语音实时信号采集,并应用消噪技术MFCC(Mel Frequency Cepstral Coefficients)和DMFCC(Delta Mel Frequency Cepstral Coefficients)。LabVIEW是一款强大的图形化编程环境,特别适用于科学和工程领域的数据采集、处理和可视化任务。 语音实时信号采集是通过声卡完成的。声卡是计算机硬件,能够捕获声音并将其转换为数字信号。在LabVIEW中,我们可以利用内置的音频I/O功能与声卡进行交互,实现声音的实时录制。这通常涉及设置采样率、位深度和通道数等参数,以确保高质量的数据获取。 接下来,消噪是语音处理中的关键步骤,特别是在噪声环境中。LabVIEW提供了多种滤波器和信号处理算法,例如Wiener滤波、Kalman滤波或者更简单的平均滤波,可以用于消除背景噪音。此外,还可以采用谱减法或自适应滤波技术来进一步提升噪声抑制效果。 MFCC是语音识别和处理领域常用的特征提取方法。它将频域的语音信号转换成对人类听觉更为敏感的Mel尺度,并通过离散余弦变换(DCT)得到 cepstrum系数,从而减少非线性和非对称性的影响。MFCC主要关注的是语音信号的频率成分,通过保留重要的频率特征,降低计算复杂度,便于后续的分类和识别任务。 DMFCC是在MFCC基础上的扩展,引入了时间差分特征,即对连续几帧MFCC特征进行差分运算,以捕捉语音信号的时间动态变化。这种方法对于区分发音相似但语调、节奏不同的词尤其有效,因为它能捕捉到语音的动态特性,提高识别的准确性。 在LabVIEW中实现MFCC和DMFCC的过程通常包括以下步骤: 1. **信号预处理**:预加重、分帧和加窗,以改善信号的质量并减少边界效应。 2. **傅里叶变换**:将时域信号转换为频域表示。 3. **Mel滤波器组**:根据Mel尺度设计滤波器,提取频带能量。 4. **对数变换**:将滤波器组输出转换为对数尺度,模拟人耳对声音的感知。 5. **离散余弦变换**:将对数能量转换为MFCC系数。 6. **差分运算**:计算MFCC特征的差分,得到DMFCC。 7. **特征选择和降维**:可能还需要进行维数约简和特征选择,以减少噪声和提高识别效率。 通过以上步骤,我们可以使用LabVIEW构建一个完整的语音信号处理系统,从声卡实时采集信号,然后应用MFCC和DMFCC进行消噪和特征提取,最后这些特征可用于语音识别、情感分析或其他语音处理应用。 LabVIEW提供了一个强大而灵活的平台,用于实现基于声卡的语音信号采集和处理。结合MFCC和DMFCC技术,可以在各种噪声环境中有效地提取语音特征,为语音识别和相关应用打下坚实基础。"voicedecide"这个文件名可能对应的是一个LabVIEW程序,用于决定语音信号是否包含语音成分,这可能是整个处理流程的一部分。
2024-07-09 17:32:42 97KB labview
rk3588 hdmiout and hdmirx 信号强度调试
2024-07-08 17:09:32 4KB hdmi
1
在信号采集和逻辑控制过程中,上升沿信号是必不可少的,这里给大家提供的就是一个获取上升沿信号的小程序,上升沿的获取时间可调。在程序中直接调用即可。
2024-07-05 17:27:41 9KB labview
1
出于某些理论和实验考虑,GeV规模的相对较轻的马约拉纳中微子引起了人们的兴趣。 在本文中,我们考虑只有一个马约拉纳中微子N与活动中微子νL的混合可忽略不计的情况,其中马约拉纳中微子的相互作用可以基于有效理论以模型独立的方法描述。 在这样的框架下,我们特别研究了在未来的Belle-II和ILC实验中通过过程e + e-→νN→γ+E̸观测质量在0-30 GeV范围内的N的可行性。 结果表明,Belle-II观察信号是没有希望的,而ILC可能很容易发现马约拉纳中微子。
2024-07-05 11:47:07 463KB Open Access
1
混沌信号在电子工程领域是一个非常有趣的课题,尤其在2022年全国电子大赛的D题中被重点关注。混沌,看似无序但实际上遵循复杂规则的一种动态系统行为,它在电路设计中有着广泛的应用,比如通信、加密、生物医学信号处理等。本资料包主要包含了关于混沌信号的仿真电路图,对于电子信息类和计算机类学生深入理解和应用混沌理论具有极高的学习价值。 我们要了解混沌电路的基本构成。一个典型的混沌电路可能包括非线性元件(如二极管、运算放大器)、线性元件(如电阻、电容、电感)以及反馈机制。通过这些元件的组合,电路可以展现出混沌特性,即对初始条件极度敏感,微小的变化可能导致完全不同的输出结果。 在描述中提到的仿真图,很可能是使用诸如Multisim、LTSpice、PSpice等电路仿真软件绘制和模拟的。这些软件能够帮助设计者在实际制作电路之前预测其行为,通过调整参数观察混沌现象的出现。仿真图通常会展示电压波形、电流波形以及相平面图,帮助我们理解电路中混沌行为的发生条件和演化过程。 对于电子信息类的学生,学习混沌电路可以帮助他们理解非线性系统的行为,这对于未来设计复杂电路和解决实际问题至关重要。而计算机类的学生,可以通过混沌电路的学习了解到如何利用这种特性进行数据加密,因为混沌系统的不可预测性可以为信息安全提供一定的保障。 在文件名称列表中提到的“仿真”可能是指一系列的仿真项目或案例,这些案例涵盖了不同类型的混沌电路设计,可能包括著名的Chua电路、Rössler系统、Lorenz系统等。每个案例都会详细展示电路设计、仿真设置以及混沌行为的可视化结果。 通过深入研究这些仿真电路图,学生可以学习到: 1. 如何识别和构建混沌电路的基本元素。 2. 非线性元件在产生混沌行为中的作用。 3. 如何设置和调整电路参数以观察混沌现象。 4. 了解如何使用电路仿真软件进行电路设计和分析。 5. 探索混沌理论在实际问题中的应用,例如通信保密性和随机数生成。 这份资源对于提升学生的理论知识和实践技能都大有裨益,它不仅涵盖了基础的电路理论,还引入了高级的混沌理论,是电子信息和计算机科学领域的宝贵学习材料。通过深入学习和实践,学生们将能够更好地理解和应用混沌信号在电路设计中的独特优势。
2024-07-04 21:51:05 3.38MB 电路仿真图
1
《GPS信号FFT捕获的GPU实现》这篇论文探讨了如何利用GPU加速GPS信号的FFT捕获过程,以缩短接收机的冷启动时间。在GPS定位系统中,信号捕获是关键步骤,它涉及到码分多址(CDMA)技术下的伪随机码相位和载波多普勒频移的搜索。FFT(快速傅里叶变换)捕获算法因其并行计算能力,能够快速搜索多个码相位,从而提高捕获速度。 文中首先介绍了FFT捕获的基本原理,即通过本地复现的码信号和载波信号与输入信号进行相关运算,找到卫星信号的码相位和多普勒频移。此过程是一个二维搜索,需要在大量可能的码相位和频率中寻找匹配。FFT算法在此过程中可以同时处理多个码相位,极大地提高了计算效率。 接着,论文对比了GPU和FPGA(现场可编程门阵列)的特点。尽管FPGA常用于并行处理,但GPU在并行计算方面表现出色,尤其在神经网络、模糊系统等领域有广泛应用。文献中提到,基于GPU的一个通道内各频点的捕获可以并行进行,相比于CPU,捕获时间大幅缩短。 论文提出了一种新的并行捕获方案,不仅在每个通道内部进行并行处理,还在各个通道之间也实现了并行化,这将捕获速度进一步提升。通过实测的GPS中频数据验证,该方案的捕获结果与基于CPU的方案相比,精度相同但时间缩短了约1/60,显著提升了捕获效率。 在实现GPU并行捕获的过程中,文章还对GPU与FPGA进行了应用比较分析,尽管两者都能进行并行计算,但GPU在通用计算任务上的优势更加明显。因此,GPU成为了实现快速FFT捕获的理想选择。 这篇论文提供了一个利用GPU优化GPS信号FFT捕获的高效方案,对于缩短GPS接收机冷启动时间具有重要意义,特别是在需要快速定位的应用场景下,这种技术的应用价值尤为突出。通过并行计算的优化,未来GPS系统的性能有望得到进一步提升。
2024-07-03 16:34:31 308KB GPS 定位系统 系统开发 参考文献
2024江西省数学建模 2024江西省数学建模交通信号灯管理题目建模解析.docx 2024江西省数学建模交通信号灯管理题目建模解析.docx 2024江西省数学建模交通信号灯管理题目建模解析.docx 2024江西省数学建模交通信号灯管理题目建模解析.docx 2024江西省数学建模交通信号灯管理题目建模解析.docx2024江西省数学建模交通信号灯管理题目建模解析.docx2024江西省数学建模交通信号灯管理题目建模解析.docx 2024江西省数学建模交通信号灯管理题目建模解析.docx 2024江西省数学建模交通信号灯管理题目建模解析.docx 2024江西省数学建模交通信号灯管理题目建模解析.docx 2024江西省数学建模交通信号灯管理题目建模解析.docx 2024江西省数学建模交通信号灯管理题目建模解析.docx 2024江西省数学建模交通信号灯管理题目建模解析.docx 2024江西省数学建模交通信号灯管理题目建模解析.docx 2024江西省数学建模交通信号灯管理题目建模解析.docx
2024-07-03 14:12:31 85KB 交通物流 交通信号灯
1
主要内容:线性调频信号的生成、雷达回波的模拟、脉冲压缩 % Author:huasir 2023.9.21 @Beijing % Input : % * bandWidth: 信号带宽 ,参考值:2.0e6 表示2MHz % * pulseDuration:脉冲持续时间,参考值:40.0e-6 表示40ms % * PRTDuration:脉冲重复周期,参考值:240ms % * samplingFrequency:采样频率,参考值:2倍的信号带宽 % * signalPower:信号能量,参考值:1 % * targetDistece:目标距离,最大无模糊距离由脉冲重复周期决定。计算公式:1/2*PRTDuration*光速 % * plotEnableHigh: 绘图控制符,1:打开绘图,0:关闭绘图 % Output : % * LFMPulse:线性调频信号 % * targetEchoPRT: 目标反射回波 % * matchedFilterCoeff: 匹配滤波器系数 % * pulseNumber:当前采样率下线性
2024-07-02 16:23:44 3KB matlab
1
在本汇编课程设计中,我们探讨的主题是“交通信号灯控制系统”。这是一份专为微机原理学习者准备的资源,旨在帮助他们理解和应用汇编语言来解决实际问题。交通信号灯控制系统是电子工程与计算机科学领域的一个典型实例,它涉及到硬件与软件的紧密结合,以及实时系统的概念。 首先,我们要理解汇编语言。汇编语言是一种低级编程语言,它与机器语言密切相关,但更易读、易写。每条汇编指令对应一个特定的机器码,直接控制计算机的硬件操作。在交通信号灯控制系统中,汇编语言用于编写控制信号灯切换的程序,这些程序需要精确控制时序,确保交通流畅且安全。 交通信号灯控制系统的设计包括以下几个关键知识点: 1. **中断系统**:在微处理器中,中断机制是处理突发事件的关键。在交通信号灯系统中,可能会有外部事件(如按钮按下)触发中断,这时处理器会暂停当前任务,响应中断,然后恢复执行。理解中断处理流程对于编写高效的交通灯控制程序至关重要。 2. **定时器/计数器**:交通信号灯的切换周期需要精确控制,这通常通过微处理器的内置定时器或计数器实现。设定适当的定时器值,可以确保每个灯色显示足够的时间。 3. **I/O接口**:微处理器通过输入/输出接口与外部设备(如LED灯、按钮等)通信。汇编语言编程需要掌握如何正确设置和读取I/O端口状态,以控制信号灯的亮灭。 4. **程序流程控制**:交通灯的控制逻辑可能涉及条件分支和循环结构。汇编语言中的跳跃指令(如JMP、JC、JZ等)用于实现这些控制流。 5. **数据存储与处理**:在系统中,可能需要存储信号灯的状态(红、绿、黄)和计时信息。了解如何在内存中有效地管理和操作数据是必要的。 6. **程序调试**:由于汇编语言的直接性和低级别性,调试过程可能更为复杂。理解如何使用调试工具(如示波器、逻辑分析仪或者集成开发环境的调试功能)对程序进行测试和优化至关重要。 在提供的资源中,"交通灯控制"可能是源代码文件,包含了实现上述功能的汇编程序。通过研究和分析这份代码,学生可以深入理解汇编语言的实际应用,同时提高解决问题的能力。此外,这样的实践项目也有助于培养严谨的编程习惯和良好的系统设计思维。
2024-07-02 13:14:52 72KB 汇编 课程设计 交通信号灯
1