火炬指标 PyTorch的模型评估指标 火炬指标作为自定义库,以提供Pytorch共同ML评价指标,类似于tf.keras.metrics 。 如,Pytorch没有用于模型评估指标的内置库torch.metrics 。 这类似于的指标库。 用法 pip install --upgrade torch-metrics from torch_metrics import Accuracy ## define metric ## metric = Accuracy ( from_logits = False ) y_pred = torch . tensor ([ 1 , 2 , 3 , 4 ]) y_true = torch . tensor ([ 0 , 2 , 3 , 4 ]) print ( metric ( y_pred , y_true )) ## define metri
1
Preface Deep learning is a fascinating field. Artificial neural networks have been around for a long time, but something special has happened in recent years. The mixture of new faster hardware, new techniques and highly optimized open source libraries allow very large networks to be created with frightening ease. This new wave of much larger and much deeper neural networks are also impressively skillful on a range of problems. I have watched over recent years as they tackle and handily become state-of-the-art across a range of difficult problem domains. Not least object recognition, speech recognition, sentiment classification, translation and more. When a technique comes a long that does so well on such a broad set of problems, you have to pay attention. The problem is where do you start with deep learning? I created this book because I thought that there was no gentle way for Python machine learning practitioners to quickly get started developing deep learning models. In developing the lessons in this book, I chose the best of breed Python deep learning library called Keras that abstracted away all of the complexity, ruthlessly leaving you an API containing only what you need to know to efficiently develop and evaluate neural network models. This is the guide that I wish I had when I started apply deep learning to machine learning problems. I hope that you find it useful on your own projects and have as much fun applying deep learning as I did in creating this book for you.
2023-11-26 06:03:51 2.5MB deep learnin python mastery
1
深度SVDD的PyTorch实现 该存储库提供了我们的ICML 2018论文“深度一类分类”中介绍的Deep SVDD方法的实现。 引用与联系 您可以在找到《深层一类分类ICML 2018》论文的PDF。 如果您使用我们的作品,也请引用以下文章: @InProceedings{pmlr-v80-ruff18a, title = {Deep One-Class Classification}, author = {Ruff, Lukas and Vandermeulen, Robert A. and G{\"o}rnitz, Nico and Deecke, Lucas and Siddiqui, Shoaib A. and Binder, Alexander and M{\"u}ller, Emmanuel and Kloft, Marius}, bookti
2023-11-24 15:54:02 2.12MB python machine-learning deep-learning pytorch
1
– Volume 2 – 20 Deep Learning 21 Convolutional Neural Nets (CNNs) 22 Recurrent Nerual Nets (RNNs) 23 Keras Part 1 24 Keras Part 2 25 Autoencoders 26 Reinforcement Learning 27 Generative Adversarial Networks (GANs) 28 Creative Applications 29 Datasets 30 Glossary
2023-11-23 13:30:42 45.26MB 深度学习 人工智能
1
SincNet SincNet是用于处理原始音频样本的神经体系结构。 这是一种新颖的卷积神经网络(CNN),它鼓励第一个卷积层发现更多有意义的滤波器。 SincNet基于参数化的Sinc函数,这些函数实现了带通滤波器。 与学习每个滤波器的所有元素的标准CNN相比,所提出的方法只能从数据中直接学习低和高截止频率。 这提供了一种非常紧凑而有效的方式来导出专门针对所需应用进行了调整的定制滤波器组。 该项目发布了一系列代码和实用程序,可通过SincNet进行说话人识别。 使用TIMIT数据库提供了说话人识别的示例。 如果您对应用于语音识别的SincNet感兴趣,可以查看PyTorch-Kaldi
2023-11-23 13:09:20 173KB audio python deep-learning signal-processing
1
Deep_Learning_for_Computer_Vision_with_Python,作者Adrian Rosebrock, 资料包含Starter, Practitioner, ImageNet Bundle三本书。
2023-11-15 06:03:12 60.58MB
1
Deep Learning for Computer Vision with Python Practioner Bundle + Starter Bundle by Adrian Rosebrock of PyImageSearch
2023-11-05 06:05:26 35.15MB Deep Learning Computer Vision
1
deep_setup非it(1).exe
2023-10-28 18:45:43 133.56MB
1
Deep Learning with Python introduces the field of deep learning using the Python language and the powerful Keras library. Written by Keras creator and Google AI researcher François Chollet, this book builds your understanding through intuitive explanations and practical examples. You'll explore challenging concepts and practice with applications in computer vision, natural-language processing, and generative models. By the time you finish, you'll have the knowledge and hands-on skills to apply deep learning in your own projects.
2023-10-26 06:02:44 15.26MB 深度学习 Python
1
总共1000多页,很好的资料,着重讲DL4J。
2023-10-24 12:53:43 11.53MB Java Deep Learning
1