matlab图像分割肿瘤代码使用数字图像处理技术的脑肿瘤分割 该存储库包括用于脑肿瘤分割及其面积计算的源代码。 还提供了测试图像数据库。 下载以下文件。 源代码2.m database.rar 学习成果! 读取图像 使用大津法的阈值 区域道具 形态运算 图像中质量部分的密度和面积计算 肿瘤分割 抽象的 脑瘤是一种致命的疾病,如果没有MRI无疑是无法确定的。 在这项事业中,试图利用MATLAB重演从MRI图像中识别出患者的大脑是否患有肿瘤。 为了准备MRI图像上的形态学活动,将其调整大小,并使用极限自尊图像将其物理更改为高对比度图像。 该基本通道可能是肿瘤附近的区域。 在此半准备的图片上应用了形态学任务,并获取了可想象区域的强度和区域数据。 从包含肿瘤的各种MRI图像的可测量正常值,可以解析出这两个字符的基本估计值。 那时,它被用来传达最后的定位结果。 尽管这种娱乐程序经常可以带来正确的结果,但是当肿瘤的大小过小或肿瘤为空时它却忽略了执行。 任务的更大目标是从特定人的不同边缘拍摄的MRI图像中构建肿瘤的2D图片信息的信息库,并对其进行检查以引起人们对肿瘤细心的3D区域的注意。 为了满足此
2021-12-16 19:10:25 586KB 系统开源
1
U-Net进行脑部分割 PyTorch中的U-Net实现基于深度学习分割算法进行脑部MRI FLAIR异常分割,该算法用于。 该存储库是中官方MATLAB / Keras实现的全Python端口。 提供了经过训练的模型的权重,这些权重可用于对其他数据集进行推断或微调。 如果您使用此存储库中共享的代码或权重,请考虑引用: @article{buda2019association, title={Association of genomic subtypes of lower-grade gliomas with shape features automatically extracted by a deep learning algorithm}, author={Buda, Mateusz and Saha, Ashirbani and Mazurowski, Maciej A
2021-12-14 16:46:31 30.09MB Python
1
脑肿瘤检测脑核磁共振成像 Brain MRI Images for Brain Tumor Detection_datasets.txt
2021-12-13 23:00:52 309B 数据集
1
Milo:大脑控制的轮椅 Milo帮助人们导航,而无需动手或四肢。 我们认为它对于ALS,锁定综合征或其他形式的瘫痪患者特别有用。 我们的脑机接口利用脑电图(EEG),这是一种经济实惠,可访问且无创的技术,可以检测脑部活动。 具体而言,当用户想象运动时,Milo通过检测对运动感觉皮层(与运动相关的大脑区域)中的mu节律(7-13 Hz)的抑制来使用运动图像信号进行转向。 除运动图像外,还使用眨眼信号和下颌伪影来启动和停止动作,并表示需要转弯。 使用Milo,用户可以通过眨眼或握紧下巴在前进和停止之间切换。 他们可以通过简单地考虑左右手的运动来向左或向右转。 我们还为护理人员设计了一个Web应用程序,他们可以从中实时查看轮椅使用者的位置,以确保他们的安全。 如果用户的心律不正常或发生崩溃,也会将一条短信发送给护理人员。 此外,我们还实施了辅助驾驶功能,可用于跟踪墙和避开物体。 Github
2021-12-13 16:22:35 285.01MB eeg brain-computer-interface Python
1
This text addresses all aspects of patient evaluation and care. This includes new findings in imaging that provide a better understanding of the extent of the lesion as well as its relationship with critical neuroanatomic function. The evolution of intraoperative imaging, functional brain mapping,and technology to identify tumor from brain is covered. This has significantly improved the ability of surgeons to more safely and aggressively remove tumors.More importantly, a better understanding of tumor biology and genomics has created an opportunity to significantly revise tumor classification and better select optimal therapy for individual patients. The text covers novel and innovative treatment options including immunotherapy, tumor vaccines, antiangiogenic agents,and personalized cancer treatment. In addition, novel agent delivery techniques are covered to offer the potential for increasing the effectiveness of treatment by delivering active agents directly where they are needed most. Malignant Brain Tumors: State-of-the-Art Treatment provides a comprehensive overview of treatment for malignant gliomas, and will prove useful by updating physicians on new therapeutic paradigms and what is on the horizon for the near future. This text will be informative for surgeons, oncologists, neurologists, residents and students who treat these patients,as well as those who are training for a career in managing patients with these challenging tumors. ,解压密码 share.weimo.info
2021-12-10 15:56:37 5.8MB 英文
1
In training to become a neurosurgeon, many of the crucial manual skills that must be acquired can only be mastered through growing experience during the rigorous and lengthy training process. Yet, many - often essential - practical skills can quickly be learned, practiced, and even mastered, away from the OR.The author's motivation for writing this guide arose during his own training and his need for just such a practical aid. Getting Ready for Brain Surgery provides the readers with a basic set of exercises that will allow him to develop and improve their motor skills, handling of various tissues, and general technical competence. Detailed instructions are given in the illustrated text and in accompanying videos.Topics include:,解压密码 share.weimo.info
2021-12-10 15:55:01 5.51MB 英文
1
This book is perhaps most relevant to interventional neuroradiologists, interventional neurologists, or endovascular neurosurgeons looking for a quick and easy read, and the organization of each chapter allows for just that, as chapters do have a heavy emphasis on illustrations, cadaveric dissections, in vivo dissections, and angiograms. -- AJNRThe book is easy to read and digest and can be read from start to finish without difficulty. However, it may be most useful when read a chapter or two at a time to supplement one's knowledge prior to a vascular rotation or a case. -- World NeurosurgeryFour master neurosurgeons bring a wealth of collective neurosurgical and neuroendovascular experience to this remarkable reference book, which melds a detailed anatomical atlas with clinical applications. The authors provide case reviews and pearls that demonstrate how anatomy impacts clinical practice decisions for aneurysm, stroke, and skull-base disease.Highlights:,解压密码 share.weimo.info
2021-12-10 15:47:35 28.98MB 英文
1
Magnetic resonance imaging (MRI) is a technique used in biomedical imaging and radiology to visualize internal structures of the body. Because MRI provides excellent contrast between different soft tissues, the technique is especially useful for diagnostic imaging of the brain, muscles, and heart.,解压密码 share.weimo.info
2021-12-10 15:39:49 93.33MB 英文
1
matlab脑部代码脑部MR和CT合成 这是用于脑部CT和MRI的基于模型的图像合成(翻译)的代码。 给定有效输入模态(MR-T1w,MR-T2w,MR-PDw,CT)的任何组合,将综合缺少的模态。 例如,如果对象仅进行了T1w扫描,则将合成CT,PDw和T2w扫描: 该实现是在MATLAB中完成的,并且取决于SPM12软件包(及其MB工具箱)。 该代码应该适用于原始图像; 也就是说,预先进行最少的预处理。 此外,由于它是完全不受监督的,因此不需要任何培训。 如果您认为该代码有用,请考虑在“参考”部分中引用该出版物。 依存关系 该算法是使用MATLAB开发的,并依赖于SPM12软件的外部功能。 因此,以下是必需下载的文件,需要将其放置在MATLAB搜索路径中(使用addpath ): SPM12:从下载。 拍摄工具箱: SPM12工具箱目录中的“拍摄”文件夹。 纵向工具箱: SPM12工具箱目录中的“纵向”文件夹。 Multi-Brain工具箱:下载/克隆并按照安装说明进行操作。 用例范例 此示例代码从输入的T1w MRI合成CT,PDw和T2w扫描。 输出将写在odir文件夹中,前缀
2021-12-02 14:29:35 373KB 系统开源
1
脑网络可视化 脑网络可视化工具(python) 运行 example/render_inputs.sh 以获得最小示例 ================ 自述文件: 命令行选项/标志: -n N:N 是 Node csv 文件的路径 -n 是必需参数 -e E:E 是 Edge csv 文件的路径 -a A:A 是邻接矩阵 csv 文件的路径 应该使用 -e 或 -a 选项。 -l L: L 是波瓣 csv 文件的路径 如果您想手动指定波瓣的范围,请使用 -s S:S 是一个数字,它指定只有权重在整个边权重范围前 s % 的边将被渲染 -t T:T 是一个数字,指定将渲染 t% 的边。 这些边将是那些具有最高权重的边。 如果相同权重的候选者之间存在平局,则会不确定地打破 -s 或 -t,或者两者都不能使用,但不能同时使用。 -o O:O 是输出文件的路径 可选(默认为 fmri-
2021-11-23 09:09:44 548KB Python
1