内包含ResNet50网络模型,模型预训练参数(.h5文件,基于tf2),以及一项使用tf2实现的对ResNet50的网络结构和预训练参数的分开调用。
2022-04-01 20:19:54 90.77MB 卷积神经网络 ResNet50 模型预训练参数
1
resnet50_weights_th_dim_ordering_th_kernels_notop.h5 50层残差网络模型,权重训练自ImageNet 该模型在Theano和TensorFlow后端均可使用,并接受channels_first和channels_last两种输入维度顺序 模型的默认输入尺寸:224x224
2022-03-20 11:01:17 90.27MB resnet50 weights th notop
1
深度学习的预训练模型的resnet模型权重,用于深度学习领域的对抗样本生成、图像识别等等,有兴趣的可以下载!
2022-03-20 10:39:47 90.75MB resnet50 resnet weights tensorflow
1
caffe Person Reid github项目:https://github.com/ShuangLI59/person_search所需要的caffemodel(训练好的)
2022-03-12 20:17:12 120.44MB personReId fastRcnn
1
开发环境:Python3.6.5、keras2.2.4、tensorflow1.12、django等 系统应用:本部分在训练完植物叶片病害识别的模型参数后,将植物叶片病害识别的模型部署到Web中,前端负责获取用户在页面上传的图像并预处理,再向服务器发出AJAX请求,请求内容为待识别的图像。服务器端程序生成TF会话并加载训练好的模型,调用相应的视图函数将请求数据送入TF会话中计算,最后将识别结果异步回传到前端。
数据集:本实验使用 Plant Village 公开数据集。本实验中的数据集共用 38个类别名称,代表38类病害。 代码:包含resnet50\ATT-ResNet\VGG等多个模型 实现环境:Python3.6.5、keras2.2.4、tensorflow1.12
本例提取了猫狗大战数据集中的部分数据做数据集,演示tensorflow2.X版本如何使用Keras实现图像分类,分类的模型使用ResNet50。本文实现的算法有一下几个特点: 1、自定义了图片加载方式,更加灵活高效,不用将图片一次性加载到内存中,节省内存,适合大规模数据集。 2、加载模型的预训练权重,训练时间更短。 3、数据增强选用albumentations。
2022-01-23 09:15:29 936.29MB 分类 big data 数据挖掘
《PaddlePaddle Fluid深度学习入门与实战》第九章的ResNet50_pretrained预训练模型
2021-12-21 17:51:14 90.73MB paddlepaddle 深度学习
1
resnet50-19c8e357.pth:pytorch预训练模型-resnet50,亲测可用,欢迎下载
2021-12-14 16:21:34 90.69MB resnet50 pytorch 预训练模型 深度学习
1
DeepF(深时尚) 背景 基于“深层时尚数据集”的时尚分析。 以下术语适用 “类别”:衣服分为“上身”,“下身”和“全身”衣服 “类别”:在类别中,服装的不同类别(例如,“ T恤”,“衬衫”等) 设定环境 该项目假定您已经设置了环境。 该项目基于以下主要依赖关系(这是在执行时。新版本也可以使用): classDetect , classDetectKinli :python = 3.6.7 tensorflow-gpu = 1.11.0 keras = 2.2.4 keras-frcnn :python = 3.6.8 tensorflow-gpu = 1.8.0 keras = 2.2.0 (注意:较旧版本的keras / tensorflow是必需的,因为较新版本中存在一个错误,会在模型训练期间导致致命错误) 提示:在具有Xeon 6核3.5 GHz,12 GB RAM,NV
2021-12-02 11:04:40 22.9MB JupyterNotebook
1