内容概要:本文旨在分析慕尼黑特蕾西恩维斯地区在2023年和2024年不同时间段(包括 Oktoberfest 期间)的地表温度(LST),以研究城市热岛效应。文中通过 Landsat 9 和 Sentinel-2 卫星影像数据,利用 Split-Window 算法计算 LST,并进行归一化处理和差异分析。此外,还计算了 NDVI、NDBI、NDWI 和 Albedo 等指数,并进行了土地覆盖分类。为了提高分辨率,采用了随机森林算法对 LST 数据进行降尺度处理。最后,通过统计分析和散点图验证了降尺度结果的有效性。 适合人群:具备一定遥感和地理信息系统(GIS)基础知识的研究人员和技术人员,尤其是对城市热岛效应和地表温度分析感兴趣的学者。 使用场景及目标:①分析特定区域(如 Oktoberfest 场地)在不同时间段的地表温度变化;②评估城市热岛效应的影响;③通过降尺度技术提高 LST 数据的空间分辨率;④验证降尺度方法的准确性。 阅读建议:此资源涉及多种遥感数据处理技术和算法,建议读者在阅读时结合实际案例进行实践操作,并重点关注代码实现和结果验证部分。同时,建议读者熟悉 Python 或 JavaScript 编程语言,以及 Google Earth Engine 平台的基本操作。
2025-06-22 14:25:25 35KB 地理信息系统 机器学习
1
内容概要:本文详细介绍了利用Python进行微博文本情感分析的研究,涵盖了三种主要的技术手段:情感词典、支持向量机(SVM)以及长短期记忆网络(LSTM)。作者首先解释了数据预处理的方法,如编码选择、表情符号转换等。接着分别阐述了每种方法的具体实现步骤及其优缺点。情感词典方法简单直接但准确性有限;SVM方法通过TF-IDF提取特征,适用于中小规模数据集;LSTM则凭借深度学习的优势,在大规模数据集中表现出更高的准确性和鲁棒性。此外,还探讨了一个融合多种模型的混合方法。 适合人群:对自然语言处理、机器学习感兴趣的研发人员和技术爱好者,尤其是希望深入了解情感分析领域的从业者。 使用场景及目标:① 快速构建情感分析原型系统;② 在不同规模的数据集上评估并选择合适的情感分析模型;③ 提升微博评论等社交媒体文本的情感分类精度。 其他说明:文中提供了完整的代码示例和数据集下载链接,便于读者动手实践。同时强调了各方法的特点和局限性,帮助读者更好地理解和应用相关技术。
2025-06-22 13:42:34 1.94MB
1
基于各种机器学习和深度学习的中文微博情感分析 项目说明 训练集10000条语料, 测试集500条语料 使用朴素贝叶斯、SVM、XGBoost、LSTM和Bert, 等多种模型搭建并训练二分类模型 前3个模型都采用端到端的训练方法 LSTM先预训练得到Word2Vec词向量, 在训练神经网络 Bert使用的是哈工大的预训练模型, 用Bert的[CLS]位输出在一个下游网络上进行finetune。预训练模型 在现代信息社会,随着社交媒体的兴起,大量的用户生成内容需要被有效分析和理解。中文微博作为其中最具代表性的社交平台之一,其上的文本数据蕴含着丰富的情感信息。对这些数据进行情感分析,不仅能帮助企业理解公众情绪,还能辅助政府相关部门进行舆情监控。因此,本项目旨在开发一种基于机器学习和深度学习技术的情感分析工具,专注于中文微博文本的情感倾向判断。 项目的核心是构建一个二分类模型,以识别和分类微博文本所表达的情感是积极的还是消极的。为了实现这一目标,研究者们采用了多种先进的机器学习算法和深度学习模型。具体来说,包括了朴素贝叶斯、支持向量机(SVM)、梯度提升决策树(XGBoost)、长短期记忆网络(LSTM)以及基于变换器的预训练语言模型Bert。 在训练这些模型之前,研究团队收集和准备了10000条标注好的中文微博语料作为训练集,并准备了500条语料作为测试集。这些语料来自不同的微博话题和用户群体,保证了样本的多样性和代表性。 朴素贝叶斯是一种基于概率理论的简单分类方法,它假设特征之间相互独立,通过计算条件概率来预测最可能的分类。尽管它的假设在现实中往往不成立,但它在许多实际问题中显示出了良好的性能。 SVM是一种有监督的学习模型,主要思想是找到一个最优的超平面,将不同类别的数据分开。它通过最大化类之间的边界来提高分类的准确性,特别适合处理非线性问题。 XGBoost是一种高效的梯度提升决策树算法,它通过建立多个决策树并迭代地优化目标函数,从而提高预测的准确性和鲁棒性。XGBoost的优势在于其对稀疏数据的处理能力和高效的计算速度。 LSTM是一种特殊的循环神经网络(RNN),能够捕捉长距离依赖关系。在这个项目中,LSTM模型首先使用未标注的大量微博语料进行预训练,从而学习到丰富的语言特征和上下文信息。随后,研究者们使用这些预训练得到的Word2Vec词向量来训练一个特定的神经网络,以进行情感分类。 Bert(Bidirectional Encoder Representations from Transformers)是一种基于变换器的预训练语言表示模型,能够通过上下文双向地学习到词、句乃至段落的深层次语义信息。在这个项目中,研究者们采用了哈工大预训练的Bert模型,并在其基础上通过finetune的方式进行微调,使得模型更好地适应中文微博情感分析的任务。 本项目的实施不仅有助于推动中文自然语言处理技术的发展,还能够为相关领域的研究者和从业者提供宝贵的参考和工具。通过深入分析微博平台上的海量文本数据,该情感分析工具能够揭示公众对特定事件或产品的情感倾向,为企业营销、公共关系、甚至是政策制定提供数据支持和决策依据。 由于中文的语义复杂性和表达多样性,对中文微博文本进行情感分析是一项挑战性工作。项目中所采用的多种机器学习和深度学习模型的组合策略,不仅提高了分析的准确性,也展现了不同模型在处理中文文本方面的优势和局限。通过对模型结果的综合评价,研究者们还可以进一步优化和改进情感分析算法,为未来的研究工作奠定基础。 此外,本项目也突显了预训练模型在自然语言处理中的重要性。通过对预训练模型的有效利用,即使是面对计算资源有限的场景,也能够实现高性能的情感分析。这表明预训练模型正在成为处理自然语言任务的重要工具,尤其在数据量和计算能力受限的情况下,其价值尤为显著。 本项目为中文微博情感分析提供了一套完整的解决方案,通过先进的机器学习和深度学习技术,能够高效准确地处理和分析社交媒体上的大量文本数据。该研究不仅具有重要的学术价值,还具有广泛的应用前景和实用价值。随着技术的不断进步和数据量的不断增长,这一领域无疑将吸引更多研究者和从业者的关注,未来的进步值得期待。
1
计算机视觉(模型、学习和推理)Algorithms算法伪代码 AnswerBookletStudents常见问题 Computer vision models, learning and inference CVMmatlab代码
2025-06-22 11:25:00 212.75MB 计算机视觉
1
"利用Comsol计算IGBT传热场:深入解析内部温度场分布的详细学习资料与模型",comsol计算IGBT传热场,可以得到IGBT内部温度场分布,提供comsol详细学习资料及模型, ,comsol计算; IGBT传热场; IGBT内部温度场分布; comsol详细学习资料; 模型,"Comsol IGBT传热场分析,内部温度场分布详解" IGBT(绝缘栅双极晶体管)是一种广泛应用于电力电子领域的半导体器件,它能够控制大电流和高压电力。在IGBT工作过程中,其内部会产生热量,这要求我们对其温度分布进行精确的计算和分析,以确保器件的稳定性和延长使用寿命。Comsol Multiphysics是一款多功能仿真软件,它能够模拟复杂的物理过程,其中包括传热场的计算。使用Comsol计算IGBT的传热场,可以帮助工程师和研究人员深入理解IGBT内部的温度场分布,从而优化器件设计和热管理策略。 在进行IGBT传热场分析时,首先需要构建IGBT的几何模型,接着定义合适的物理场接口,比如温度场(热传导)、电流场(电荷输运)以及流体动力学(对于冷却系统)。之后,需要设置材料属性、边界条件以及初始条件,这些参数应尽可能地接近实际工作条件。在模型建立和参数输入完成后,可以进行网格划分,并通过求解器计算出稳态或瞬态的温度分布。 Comsol软件中提供了丰富的模块和工具,可以模拟IGBT在不同工作状态下的热效应,如通态损耗、开关损耗等产生的热效应。模拟结果可以帮助研究者了解IGBT内部温度分布的非均匀性,识别热点,从而对散热结构进行优化。此外,通过模拟还可以对IGBT的封装设计进行评估,确保封装材料和结构能够有效地将内部产生的热量传导出去。 在实际应用中,基于Comsol的IGBT传热场模拟可以帮助工程师预测器件在恶劣工作条件下的温度响应,评估可靠性,并为实际的冷却系统设计提供理论依据。例如,可以模拟不同散热器设计对IGBT温度场的影响,选择最佳的散热方案,或者模拟不同的冷却介质流动对温度场的影响,以实现最佳的冷却效果。 Comsol模拟IGBT传热场不仅有助于提高IGBT的性能和可靠性,还可以减少物理原型测试的需求,降低成本和开发周期。通过在设计阶段就预测和解决可能的热问题,可以极大地提升电子产品的竞争力和市场表现。 为了更好地理解和运用Comsol进行IGBT传热场的分析,相关学习资料和模型是非常有帮助的。这些资料会详细介绍如何使用Comsol进行IGBT的热建模、参数设置、网格划分、求解器选择以及结果的后处理等。此外,还可能包含一些特定案例的分析和讨论,这些案例能够帮助工程师和研究者将理论知识应用到实际问题中去。 利用Comsol计算IGBT传热场是电力电子领域研究和开发过程中的一个重要环节,它不仅能够帮助理解IGBT在工作中的热行为,还能指导工程师对器件进行优化,提高其整体性能和可靠性。通过深入学习和掌握Comsol的相关知识,可以更好地服务于IGBT及其它电力电子器件的设计和制造。
2025-06-22 09:36:12 742KB sass
1
这个数据集是一个典型的欺诈检测数据集,适用于各类数据分析、机器学习和数据挖掘任务,尤其是用来训练和评估模型在金融、电子商务等领域中识别欺诈行为的能力。该数据集包含了大量的交易记录,每一条记录都包含了关于交易的不同特征,例如交易金额、时间、客户身份、购买商品类型等信息。通过对这些数据的分析,可以帮助研究人员和数据科学家训练分类模型,以区分正常交易与欺诈交易,从而提高系统在真实环境中的准确性和安全性。 在实践中,欺诈检测是金融服务领域中至关重要的一项工作,尤其是信用卡支付、在线银行交易以及电子商务平台等,都可能面临欺诈风险。通过应用该数据集进行模型训练和调优,研究人员可以学习如何使用各种机器学习算法,如逻辑回归、决策树、随机森林、支持向量机(SVM)等,来提高检测系统的准确率和召回率。此外,该数据集也常常用来进行模型的性能评估,包括精度、召回率、F1值、AUC等指标,这些评估指标能够反映模型在检测欺诈交易时的实际表现。 总的来说,这个欺诈检测数据集是一个非常有价值的资源,能够帮助从事数据科学、机器学习、人工智能等领域的研究人员深入理解如何构建高效的欺诈检测系统,同时也为各类实际应用提供
2025-06-21 17:38:52 32.89MB 机器学习
1
Kaggle 贷款批准预测的数据集是一个典型的机器学习问题,旨在通过分析客户的个人和财务信息,预测他们是否能够获得贷款批准。该数据集的一个显著特点是它具有极度不平衡的正负样本分布,即大部分申请贷款的用户都未获得批准(负类样本),而只有少部分用户获得批准(正类样本)。这种样本不平衡的情况在实际的商业和金融领域中是非常常见的,通常会给模型的训练和评估带来很大的挑战。 对于新手和初学者而言,处理这类不平衡数据集是一个非常好的练习机会,因为它可以帮助你掌握如何应对数据集中的正负样本不均衡问题。 初学者不仅可以提升数据预处理、特征工程、模型选择和调优的能力,还能更好地理解和应用机器学习中处理不平衡数据的技巧和方法。此外,这类任务通常涉及到实际业务问题,帮助学习者将理论与实践结合,提升解决现实问题的能力。 总之,Kaggle 贷款批准预测的数据集是一个非常适合新手练习和学习的数据集,通过对不平衡数据的处理,学习者可以掌握更多数据分析和机器学习的核心技能,同时为今后更复杂的项目打下坚实的基础。
2025-06-21 17:06:56 1.45MB 机器学习
1
内容概要:本文详细介绍了基于麻雀搜索算法(SSA)优化的CNN-LSTM-Attention模型在数据分类预测中的应用。项目旨在通过SSA算法优化CNN-LSTM-Attention模型的超参数,提升数据分类精度、训练效率、模型可解释性,并应对高维数据、降低计算成本等挑战。文章详细描述了模型的各个模块,包括数据预处理、CNN、LSTM、Attention机制、SSA优化模块及预测评估模块。此外,文中还提供了具体的Python代码示例,展示了如何实现模型的构建、训练和优化。 适合人群:具备一定编程基础,尤其是对深度学习、优化算法有一定了解的研发人员和数据科学家。 使用场景及目标:①优化数据分类精度,适用于高维、非线性、大规模数据集的分类任务;②提升训练效率,减少对传统手工调参的依赖;③增强模型的可解释性,使模型决策过程更加透明;④应对高维数据挑战,提高模型在复杂数据中的表现;⑤降低计算成本,优化模型的计算资源需求;⑥提升模型的泛化能力,减少过拟合现象;⑦推动智能化数据分析应用,支持金融、医疗、安防等领域的决策制定和风险控制。 阅读建议:本文不仅提供了详细的模型架构和技术实现,还包含了大量的代码示例和理论解释。读者应结合具体应用场景,深入理解各模块的功能和优化思路,并通过实践逐步掌握模型的构建与优化技巧。
2025-06-21 15:49:47 47KB Python DeepLearning Optimization
1
内容概要:本文详细介绍了深度学习(Deep Learning)及其相关技术如何在医学图像处理各个应用领域能够显著提升效果并改变传统方法的内容和研究进展。具体而言,文章探讨了深度学习理论与基本概念,以及它们在医学图像检测与识别、分割任务中的出色表现,对图像配准和重建也有重要贡献。文中还提到了一些先进的网络架构如自编码器、对抗生成网络(GAN)、ResNets、U-net等在医疗影像的具体应用场景和技术细节;物理建模方面亦有所涉猎,并特别强调了基于深度神经网络的数据驱动物理模拟带来的潜在优势。与此同时,文章讨论了几项当前面临的关键挑战,例如数据增强的重要性及其带来的改进可能性、以及可能引起误分类的问题——对抗样本攻击的影响。此外还简要论述了计算加速硬件、开源软件工具箱等对迅速发展的支撑因素。 适合人群:医学图像研究人员和专业学生,尤其那些希望深入理解和掌握深度学习应用于医学图像处理的科学家和临床医生。 使用场景及目标:帮助研究人员理解并实施新的算法以解决实际中的各种医学成像难题,提高诊断效率并支持个性化治疗决策。 其他说明:鉴于本论文覆盖范围广博并且不断更新,推荐读者关注最新的科研动态以便紧跟该领域的快速进步态势。
2025-06-21 10:55:48 2.61MB
1
《基于CNN神经网络的手写字符识别实验报告》 在当今的深度学习领域,卷积神经网络(CNN)已经成为图像识别任务的重要工具。本实验报告针对手写字符识别问题,运用了经典的CNN模型LeNet5,旨在探究其在MNIST数据集上的表现。MNIST数据集是手写数字识别的标准基准,包含大量28x28像素的灰度图像,涵盖了0到9共10个数字。 CNN的核心原理在于其特有的层结构:卷积层、池化层和全连接层。卷积层通过滑动卷积核对输入图像进行操作,提取图像的局部特征,如边缘和纹理,保持空间信息。池化层进一步减少特征图的维度,常采用最大池化以保留关键特征,提高计算效率。全连接层则将提取的特征映射到各个输出类别,实现分类。激活函数如ReLU、Sigmoid和Tanh等用于引入非线性,提升模型表达能力,其中ReLU因其防止梯度消失的特性而被广泛应用。Softmax层将全连接层的输出转化为概率分布,确定最可能的类别。 实验中采用的LeNet5模型包含2个卷积层、2个池化层、2个全连接层以及输出层。具体结构如下: 1. 输入层接收28x28像素的灰度图像,预处理后输入网络。 2. 第一层卷积层C1,使用6个5x5的卷积核,步长为1,无填充,产生6个特征图。 3. 第一层池化层S2,2x2的最大池化,步长为2,将特征图尺寸减半。 4. 第二层卷积层C3,16个5x5的卷积核,同样步长为1,无填充,产生16个特征图。 5. 第二层池化层S4,继续使用2x2的最大池化,进一步降低特征图尺寸。 6. 全连接层C5将特征图展平,并通过120个神经元的全连接层。 7. 再次全连接层F6,连接120个神经元到84个神经元。 8. 输出层包含10个神经元,对应0-9的数字分类。 模型的构建代码如下: ```python model = models.Sequential([ layers.Conv2D(6, kernel_size=(5, 5), strides=(1, 1), activation='relu', input_shape=(28, 28, 1), padding='same'), layers.AveragePooling2D(pool_size=(2, 2), strides=(2, 2)), layers.Conv2D(16, kernel_size=(5, 5), strides=(1, 1), activation='relu'), layers.AveragePooling2D(pool_size=(2, 2)), layers.Flatten(), layers.Dense(120, activation='relu'), layers.Dense(84, activation='relu'), layers.Dense(10, activation='softmax') ]) ``` 实验中,模型通过交叉熵损失函数衡量预测与实际标签的差距,并用反向传播算法更新权重,以优化网络性能。 本实验不仅验证了CNN在手写字符识别任务中的有效性,还通过调整网络结构和参数,探讨了影响模型性能的因素。对于深度学习初学者和研究者而言,此类实验提供了理解CNN工作原理和实践应用的良好平台。随着技术的发展,未来可能还会探索更复杂的模型结构和优化技术,以应对更大规模和更复杂的手写字符识别任务。
2025-06-20 22:45:40 1.24MB 深度学习
1