代码里一些参数没有修改好,修改完就可以当通用函数使用
2021-12-12 16:30:53 2KB 降维
1
1、无监督学习 没有目标值(变量)的算法 常见的无监督学习算法: 降维: – 主成分分析PCA降维处理 聚类: – K-means(k均值聚类) 2、主成分分析 应用PCA实现特征的降维 ·定义:高维数据转化为低维数据的过程,在此过程中可能会舍弃原有数据、创造新的变量 ·作用:是数据维散压缩,尽可能降低原数据的维数(复杂度),损失少量信息。 ·应用:回归分析或者聚类分析当中 PCA的APA: ·sklearn.decomposition.PCA(n_components=None) – 将数据分解为较低维数空间 n_components: ·小数:表示保留百分之多少的信息 ·整数:减少到多少特
2021-12-07 18:52:02 152KB k-means k-means算法 mean
1
使用sklearn库自带的手写数字数据来进行PCA降维后再用K-近邻算法去训练,拥有展示成果功能。
2021-11-24 22:07:56 3KB Python scikit-learn PCA
1
主成分分析PCA的matlab实现,自己写的,很好用。
2021-11-10 14:46:37 1KB PCA MATLAB
1
svd算法matlab代码主成分分析(PCA)实验 主成分分析(PCA)非常有用,并且是统计和机器学习中常用的算法之一。 该工具被广泛用于各种应用中,例如用于可视化和分析的降维,压缩,离群值检测和图像处理。 PCA是我最喜欢用于各种任务的工具之一,通常用于可视化目的。 但是,我意识到,一直以来,我一直只是将其用作黑匣子,对它的概念只有很浅的了解。 因此,这激发了我使用PCA的自定义实现创建此存储库的动力。 请注意,此存储库无意描述有关PCA的完整详细信息。 仅显示一些python代码以帮助更好地了解其计算方式。 为了获得更好,更全面的资料,我发现“主成分分析教程” [1]非常有用。 关于PCA 简而言之,该方法对角化输入数据的协方差矩阵。 对角矩阵的属性是所有值都是零,除了对角线上的值必须为非零。 该方法假定输入数据的变量之间存在线性关系,并且删除了它们之间的关系。 有几种计算PCA的方法: 通过协方差矩阵-当特征数比记录数下这是非常有用的。 而且更容易解释这种方法。 通过标产品矩阵-当特征数比记录数较高,这是有用的。 通过奇异值分解(SVD) -这种方法在实践中使用最多(Scikit
2021-11-07 22:31:44 103KB 系统开源
1
概述 本文主要介绍一种降维方法,PCA(Principal Component Analysis,主成分分析)。降维致力于解决三类问题。 1. 降维可以缓解维度灾难问题; 2. 降维可以在压缩数据的同时让信息损失最小化; 3. 理解几百个维度的数据结构很困难,两三个维度的数据通过可视化更容易理解。 PCA简介 在理解特征提取与处理时,涉及高维特征向量的问题往往容易陷入维度灾难。随着数据集维度的增加,算法学习需要的样本数量呈指数级增加。有些应用中,遇到这样的大数据是非常不利的,而且从大数据集中学习需要更多的内存和处理能力。另外,随着维度的增加,数据的稀疏性会越来越高。在高维向量空间中探索同样的数
2021-11-01 21:48:48 149KB python 示例
1
通俗易懂的PCA入门,有详细的例子
2021-10-16 16:44:06 315KB 数据挖掘 模式识别 PCA 降维
1
import numpy as np import matplotlib.pyplot as plt #载入数据 data=np.genfromtxt(data.csv,delimiter=,) x_data=data[:,0] y_data=data[:,-1] plt.scatter(x_data,y_data) plt.show() print(x_data.shape) #数据中心化 def zeroMean(dataMat): #按列求平均,即各个特征的平均 meanVal=np.mean(dataMat,axis=0) newData=dataMat
2021-10-11 14:20:02 33KB
1
github上评分比较高的一个用eigen实现的C++算法 写的挺好的
2021-10-08 14:10:36 468KB eigen PCA 算法 C语言
1
此程序是一个简单的PCA降维处理,程序中以SampleData.txt中的三维数据点作为输入,程序的输出存放在Results目录, 其中包括: 1. PCAResult.txt 存放经主元分析后在主元轴坐标系下的数据坐标。 2. DisplaySamples.ms 为3ds Max脚本文件,用3ds Max打开后可看到SampleData.txt表示的数据点。 3. DisplayResult.ms 为3ds Max脚本文件,用3ds Max打开后可看到将原3维数据在主元轴坐标系下降到2维后的数据点;同时该文件还显示了主元分析得到的前两个主元轴。
2021-10-06 19:28:55 135KB PCA C++ 降维 主成分分析
1