QT多线程调用摄像头录屏是一个涉及到计算机视觉、多媒体处理和并发编程的复杂任务。在本项目中,我们主要会使用OpenCV库来获取摄像头的视频流,Qt5框架来构建用户界面并处理多线程,以及FFmpeg工具来进行视频压缩。下面将详细介绍这三个关键知识点。 1. **OpenCV**: OpenCV(开源计算机视觉库)是一个强大的图像和视频处理库,广泛用于计算机视觉相关的应用。在这个项目中,我们将使用OpenCV的`VideoCapture`类来打开和捕获摄像头的视频流。通过设置其参数,我们可以选择不同的摄像头设备,调整帧率、分辨率等。同时,OpenCV提供了`VideoWriter`类,用于将视频流写入文件,允许我们指定编码器、码率、分辨率等参数,实现录制功能。 2. **Qt5**: Qt是一个跨平台的应用程序开发框架,支持C++语言。在这里,Qt5主要用于创建用户界面,包括按钮、文本框等控件,让用户能够交互地选择摄像头、设定保存路径以及是否选择特定区域进行录制。Qt5的多线程模型,如`QThread`,可以帮助我们在主线程处理UI交互的同时,将视频录制的任务放在单独的线程中执行,避免阻塞用户界面。 3. **FFmpeg**: FFmpeg是一个全面的、免费的开源多媒体处理工具集合,它包含了各种编解码器和命令行工具。在项目中,FFmpeg的命令行工具被用来压缩录制的视频,以减小文件大小。通过在后台调用系统命令,我们可以传递合适的参数,如视频编码格式(如H.264)、质量、比特率等,以达到理想的压缩效果。 4. **多线程编程**: 在QT中,多线程是通过`QThread`类实现的。在本项目中,我们需要创建一个子线程来执行视频录制任务,防止这个长时间运行的任务影响主线程的响应速度。子线程中,我们会调用OpenCV的`VideoWriter`进行录制,并在完成后使用FFmpeg进行压缩。为了确保线程间通信的安全,可能需要使用信号和槽机制或者异步回调函数来更新UI状态。 5. **用户界面交互**: 用户界面设计是整个应用的关键部分。用户需要能够轻松地开启和停止录像,选择摄像头,指定保存路径,以及设定是否录制特定区域。这需要通过Qt的事件处理和信号槽机制来实现。例如,当用户点击“开始录制”按钮时,触发一个信号,启动子线程开始录像;当用户点击“停止录制”时,发送停止信号,子线程完成录制并关闭。 6. **视频区域选择**: 如果项目包含选择区域录制功能,可能需要使用OpenCV的图像处理函数来实现。用户可以通过拖动鼠标选择屏幕上的矩形区域,这部分可以利用鼠标事件和图像处理函数来实时绘制和捕捉选定的视频区域。 "QT多线程调用摄像头录屏"项目结合了OpenCV的视频处理能力,Qt5的UI设计和多线程管理,以及FFmpeg的视频压缩技术,提供了一个高效且用户友好的视频录制解决方案。通过熟练掌握这些技术,开发者可以构建出更加复杂和定制化的多媒体应用程序。
2024-08-13 10:54:41 12KB opencv ffmpeg
1
实现了通过在图像上增加或者减少控制点,通过鼠标调整控制点,可以对图像进行微变形,如果图像是人脸,如眼睛的增大或减小的调整,相当于对人脸进行了整形。算法原理见配套博客《python+opencv实现人脸微整形》
2024-08-11 20:26:17 6KB python opencv
1
使用OpenCV的DNN模块部署YOLOv3网络模型,实现图像的目标检测。资源包含了YOLOv3网络的模型文件yolov3.weights、配置文件yolov3.cfg以及标签文件coco.names,下载之后可以直接运行哦!
2024-08-02 10:32:10 285.33MB opencv 目标检测
1
基于多项式插值的亚像素边缘坐标拟合直线示例, VS2015 MFC. 具体原理可参考 https://blog.csdn.net/yx123919804/article/details/103123071
2024-08-01 19:02:03 250KB OpenCV 直线拟合
1
windows 环境下使用 cmake+mingw-w64+qt5.10 编译 opencv3.4... windows 环境下使用 cmake+mingw-w64+qt5.10 编译 opencv3.4... windows 环境下使用 cmake+mingw-w64+qt5.10 编译 opencv3.4... vvvv windows 环境下使用 cmake+mingw-w64+qt5.10 编译 opencv3.4... windows 环境下使用 cmake+mingw-w64+qt5.10 编译 opencv3.4... windows 环境下使用 cmake+mingw-w64+qt5.10 编译 opencv3.4... v windows 环境下使用 cmake+mingw-w64+qt5.10 编译 opencv3.4... windows 环境下使用 cmake+mingw-w64+qt5.10 编译 opencv3.4... 2018-----》
2024-08-01 17:22:41 168.14MB opencv windows cmake mingw
1
OpenCV(开源计算机视觉库)是一个强大的工具,用于图像处理和计算机视觉任务,包括缺陷检测。在基于视频流水线的缺陷检测中,我们通常会利用OpenCV的实时处理能力,结合机器学习或深度学习算法来识别生产线上的产品缺陷。本项目提供了一套完整的源代码和视频文件,帮助开发者理解并实现这样的系统。 我们要了解视频流水线的基本概念。视频流水线是指将视频数据连续输入,通过一系列处理步骤,如帧捕获、预处理、特征提取、分类和后处理,来实现目标检测和识别。在这个OpenCV缺陷检测项目中,视频流被分割成单个帧,然后逐帧进行分析。 1. **帧捕获**:OpenCV中的`VideoCapture`类可以用来读取视频文件,每一帧都被当作一个图像处理。通过设置适当的参数,我们可以控制帧的捕获速度和质量。 2. **预处理**:预处理阶段包括去噪、增强对比度、灰度化等操作,以提高后续处理的效果。例如,可以使用`GaussianBlur`进行高斯滤波去除噪声,`cvtColor`函数转换为灰度图像。 3. **特征提取**:特征提取是识别关键信息的关键步骤。OpenCV提供了多种特征提取算法,如SIFT(尺度不变特征变换)、SURF(加速稳健特征)等。在这个项目中,可能会用到边缘检测算法,如Canny或Hough变换,来识别可能的缺陷边缘。 4. **分类器训练与应用**:为了识别缺陷,我们需要一个分类器,这可以是传统机器学习模型(如支持向量机SVM)或者深度学习网络(如YOLO、SSD)。项目源代码可能包含了训练好的模型,通过`cv2.ml`模块加载SVM模型,或者使用`dnn`模块加载深度学习模型。 5. **目标检测**:利用训练好的分类器对每个帧进行预测,找出可能的缺陷区域。这一步可能涉及滑动窗口或锚框策略,以及非极大值抑制(NMS)来消除重复检测。 6. **后处理**:将检测到的缺陷区域进行可视化,通常会用矩形框标出,并可能显示缺陷类型和置信度。`rectangle`函数可以用来在图像上画出矩形。 在`Defect-workpiece-identification`这个文件夹中,可能包含以下内容: - `source_code`: 源代码文件,可能有Python脚本,包含了上述流程的实现。 - `video`: 视频文件,用于测试缺陷检测算法。 - `models`: 训练好的分类器模型文件。 - `data`: 可能包含训练和测试用的图像或标注数据。 - `readme.md`: 项目的说明文档,详细解释了如何运行和使用代码。 通过研究这个项目,开发者不仅可以学习到如何使用OpenCV进行实时视频处理,还能掌握缺陷检测的完整流程,这对于工业自动化和质量控制领域有着广泛的应用价值。
2024-08-01 09:45:12 26.49MB opencv 缺陷检测 python
1
OpenCV(开源计算机视觉库)是一个强大的跨平台计算机视觉库,它包含了大量的图像处理和计算机视觉功能。在本示例中,我们将深入探讨OpenCV如何实现简单的人脸识别,主要聚焦于使用预训练的Haar级联分类器,如`haarcascade_frontalface_default.xml`。 ### 人脸识别的基本原理 人脸识别是计算机视觉领域的一个经典问题,通常涉及特征提取、人脸检测和匹配等步骤。OpenCV提供了一种基于Haar特征和Adaboost算法的级联分类器来检测图像中的人脸。 #### Haar特征 Haar特征是一种用于图像分析的简单但有效的特征表示方法。它们是由矩形结构组成,可以捕捉图像中的边缘、线和区域信息。例如,水平、垂直和对角线的差异可以帮助检测眼睛、鼻子和嘴巴等面部特征。 #### Adaboost算法 Adaboost(自适应弱分类器组合)是一种机器学习算法,用于构建强分类器。在人脸识别中,Adaboost会从大量弱Haar特征中挑选出能够最好地区分人脸和非人脸的特征,形成一个级联分类器。 ### `haarcascade_frontalface_default.xml` 这个XML文件是预先训练好的级联分类器,包含了多级的决策规则,用于检测图像中的正面人脸。每一级都是一组弱分类器,通过多数表决的方式决定是否为人脸。级联结构的设计使得大部分非人脸区域在早期阶段就被快速排除,减少了后续计算的负担。 ### 使用OpenCV进行人脸识别 在Python中使用OpenCV进行人脸识别,首先需要加载`haarcascade_frontalface_default.xml`文件,然后对输入图像或视频帧进行处理: ```python import cv2 # 加载预训练的人脸检测模型 face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_default.xml') # 读取图像 image = cv2.imread('image.jpg') # 转换为灰度图像,因为级联分类器通常需要灰度图像 gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # 检测人脸 faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30)) # 在检测到的人脸上画矩形框 for (x, y, w, h) in faces: cv2.rectangle(image, (x, y), (x+w, y+h), (0, 255, 0), 2) ``` 上述代码会检测图像中的所有正面人脸,并在每个检测到的人脸上画出绿色矩形框。 ### 扩展应用 除了基本的人脸检测,OpenCV还支持其他复杂的任务,如眼睛、嘴巴的检测,甚至更高级的人脸识别,如使用Eigenfaces、Fisherfaces或LBPH(局部二值模式直方图)算法进行特征提取和识别。这些方法可以帮助我们实现更复杂的应用,比如身份验证、情绪分析等。 OpenCV的人脸识别功能强大且易于使用,结合预训练的级联分类器,使得在各种项目中实现人脸识别变得非常方便。无论是学术研究还是商业应用,OpenCV都是一个值得信赖的工具。
2024-08-01 09:43:17 124KB opencv 人脸识别
1
博文“基于flask+opencv+sklearn+tensorflow的人脸识别系统”对应的源代码,其中包括前端源代码和后端源代码。
2024-07-31 20:04:46 100KB flask opencv tensorflow tensorflow
1
opencv改写的GIMP的颜色增强,Opencv2.4.13Gpu+Cuda8.0.文章参考:http://blog.csdn.net/hyqwmxsh/article/details/77980709。 opencv2.4.13Gpu版:http://blog.csdn.net/hyqwmxsh/article/details/75228886
2024-07-30 13:21:08 3KB 颜色增强
1
在本文中,我们将深入探讨如何使用OpenCV库进行C++编程,特别关注图像的加载、显示和输出。OpenCV(开源计算机视觉库)是计算机视觉和机器学习领域的一个强大工具,广泛应用于图像处理、图像分析以及机器学习算法的实现。 让我们了解OpenCV的基本概念。OpenCV是一个跨平台的库,提供了丰富的函数和类来处理图像和视频数据。它最初由Intel开发,现在由全球的开源社区维护。OpenCV支持多种编程语言,包括C++、Python、Java等,而在这个场景中,我们使用的是C++。 在Visual Studio 2015环境下,你需要配置OpenCV库才能使用其功能。下载并安装OpenCV 3.4.9版本,然后在项目设置中添加OpenCV的头文件目录和库目录。确保在链接器选项中指定OpenCV的库文件,这样你的项目就能正确地找到和使用OpenCV的功能。 接下来,我们将讨论三个基本的OpenCV图像操作:图像加载、显示和输出。 1. **图像加载**:在OpenCV中,可以使用`imread()`函数从磁盘加载图像。这个函数返回一个`Mat`对象,这是OpenCV中表示图像的主要数据结构。例如: ```cpp cv::Mat image = cv::imread("path_to_your_image.jpg"); ``` 如果图像成功加载,`image`将包含图像数据;否则,它将是一个空的`Mat`。 2. **图像显示**:一旦图像被加载,你可以使用`imshow()`函数在窗口中显示它。你需要为每个窗口指定一个唯一的标题,并传递`Mat`对象作为参数。显示图像后,可以使用`waitKey()`函数暂停程序,等待用户按键事件,通常设置一个延迟时间,例如1毫秒。 ```cpp cv::namedWindow("Image Display", cv::WINDOW_NORMAL); cv::imshow("Image Display", image); cv::waitKey(0); ``` 3. **图像输出**:要将图像保存到磁盘,可以使用`imwrite()`函数。提供输出文件路径和要保存的`Mat`对象即可。 ```cpp cv::imwrite("output_image.jpg", image); ``` 在提供的压缩包文件中,可能包含了三个示例项目:openCVTest05、openCVTest04和opencvTest。这些项目可能分别演示了上述的图像加载、显示和输出过程,或者可能涉及更复杂的图像处理技术,如颜色空间转换、滤波、特征检测等。通过查看和运行这些项目,你可以更好地理解和应用OpenCV的基本功能。 总结一下,OpenCV是一个强大的计算机视觉库,适用于图像处理和分析。在Visual Studio 2015中,你可以使用C++配合OpenCV 3.4.9进行图像的读取、显示和保存。通过实践上述示例和项目,你可以加深对OpenCV的理解,为后续的计算机视觉项目打下坚实的基础。
2024-07-21 23:32:22 26MB opencv 图像显示输出
1