从修改的MobileNet的实现。 imagenet数据处理 nohup python main.py -a mobilenet ImageNet-Folder> log.txt& 结果 sgd:top1 68.848 top5 88.740 rmsprop:top1 0.104 top5 0.494 来自sgd的rmsprop init:top1 69.526 top5 纸:top1 70.6 基准: Titan-X,批处理大小= 16 resnet18 : 0.004030 alexnet : 0.001395 vgg16 : 0.002310 squeezenet : 0.009848 mobilenet : 0.073611 Titan-X,批处理大小= 1 resnet18 : 0.003688 alexnet : 0.001179
2022-03-07 18:46:15 30.92MB Python
1
本例提取了植物幼苗数据集中的部分数据做数据集,数据集共有12种类别,今天我和大家一起实现tensorflow2.X版本图像分类任务,分类的模型使用MobileNetV3。本文实现的算法有一下几个特点: 1、自定义了图片加载方式,更加灵活高效,不用将图片一次性加载到内存中,节省内存,适合大规模数据集。 2、加载模型的预训练权重,训练时间更短。 3、数据增强选用albumentations。 4、使用classification_report评估模型。 详见文章链接: https://wanghao.blog.csdn.net/article/details/122797153?spm=1001.2014.3001.5502
2022-02-06 16:06:09 937.12MB 分类 big data 数据挖掘
本例提取了植物幼苗数据集中的部分数据做数据集,数据集共有12种类别,今天我和大家一起实现tensorflow2.X版本图像分类任务,分类的模型使用MobileNetV3。 通过这篇文章你可以学到: 1、了解MobileNetV3的特点。 2、如何加载图片数据,并处理数据。 3、如果将标签转为onehot编码 4、如何使用数据增强。 5、如何使用mixup。 6、如何切分数据集。 7、如何加载预训练模型。 原文链接:https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/122795928
2022-02-06 12:05:53 937.3MB 分类 数据挖掘 人工智能 机器学习
本例提取了植物幼苗数据集中的部分数据做数据集,数据集共有12种类别,今天我和大家一起实现tensorflow2.X版本图像分类任务,分类的模型使用MobileNetV2,MobileNetV2在MobileNetV1的基础上增加了线性瓶颈(Linear Bottleneck)和倒残差(Inverted Residual)是一种轻量级的网络,适合应用在真实的移动端应用场景。 关于MobileNetV2的介绍可以看我以前的文章: https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/122766065 通过这篇文章你可以学到: 1、如何加载图片数据,并处理数据。 2、如果将标签转为onehot编码 3、如何使用数据增强。 4、如何使用mixup。 5、如何切分数据集。 6、如何加载预训练模型。 详见文章:https://wanghao.blog.csdn.net/article/details/122773967
2022-02-03 12:05:14 961.09MB 分类 数据挖掘 人工智能 机器学习
本例提取了植物幼苗数据集中的部分数据做数据集,数据集共有12种类别,今天我和大家一起实现tensorflow2.X版本图像分类任务,分类的模型使用MobileNetV2。本文实现的算法有一下几个特点: 1、自定义了图片加载方式,更加灵活高效,不用将图片一次性加载到内存中,节省内存,适合大规模数据集。 2、加载模型的预训练权重,训练时间更短。 3、数据增强选用albumentations。 文章链接:https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/122768747
2022-02-02 17:05:56 937.01MB 图像分类
本例提取了植物幼苗数据集中的部分数据做数据集,数据集共有12种类别,今天我和大家一起实现tensorflow2.X版本图像分类任务,分类的模型使用MobileNetV1。本文实现的算法有一下几个特点: 1、自定义了图片加载方式,更加灵活高效,不用将图片一次性加载到内存中,节省内存,适合大规模数据集。 2、加载模型的预训练权重,训练时间更短。 3、数据增强选用albumentations。
2022-01-27 09:12:29 970.3MB 分类 big data 数据挖掘
本例提取了植物幼苗数据集中的部分数据做数据集,数据集共有12种类别,今天我和大家一起实现tensorflow2.X版本图像分类任务,分类的模型使用MobileNet,其核心是采用了深度可分离卷积,其不仅可以降低模型计算复杂度,而且可以大大降低模型大小,本文使用的案例训练出来的模型只有38M,适合应用在真实的移动端应用场景。 关于MobileNet的介绍可以看我以前的文章:https://wanghao.blog.csdn.net/article/details/122699618 通过这篇文章你可以学到: 1、如何加载图片数据,并处理数据。 2、如果将标签转为onehot编码 3、如何使用数据增强。 4、如何使用mixup。 5、如何切分数据集。 6、如何加载预训练模型。 详见文章链接:https://blog.csdn.net/hhhhhhhhhhwwwwwwwwww/article/details/122700746
2022-01-26 17:07:35 936.3MB 分类 数据挖掘 人工智能 机器学习
mobilenet v2、tensorflow 2.7.0 、 kears 2.7.0
2022-01-07 09:18:48 984.23MB mobilenet tensorflow2.7.0 kears2.7.0
1
mobilenet_v2_1.4_224备份下载链接https://github.com/tensorflow/models/tree/master/research/slim/#Pretrained
2021-12-14 15:43:36 129.68MB mobilenet_v2 tensorflow ckpt
1
Pytorch实现MobileNet模型在CIFAR10数据集上的测试。ipynb文件,包含了完整的训练、测试输出数据。
2021-12-13 16:08:17 157KB pytorch cifar10 python
1