本基于BP神经网络和卷积神经网络对手写数字识别进行研究,使用10000张已标注的大小为28*28的手写数字图片进行训练和测试,从所有图片中随机选出9000张作为训练样本对网络进行训练,另外1000张作为测试样本用于测试网络的识别效果。其中BP神经网络采用了逐像素特征提取法、数字骨架特征提取(包括粗网格特征提取、笔画密度提取、外轮廓特征提取、像素百分比特征提取四种方法)以及主成分分析法提取像素特征信息,将获得的特征信息作为网络输入进行训练。在Matlab环境下,编程分别对训练样本进行训练,测试样本进行测试识别,得到分类结果和正确率,然后对每种结果进行对比,可比较BP神经网络和卷积神经网络的优劣性
1
(10分) MNIST手写数字识别问题的多层神经网络模型实践 按课程案例,动手完成编码实践。 自行设计一种神经网络模型,并尝试采用不同超参数,让模型的准确率达到97.5%。 提交要求: 1、你认为最优的一次带运行结果的源代码文件(.ipynb 格式) 2、作为附件上传 评分标准: 1、完成MNIST手写数字识别的神经网络建模与应用,有完整的代码,模型能运行,准确率达97%以上;得6分;每下降一个百分点,少得1分; 2、准确率达97.3%以上;再得2分,否则再得0分; 3、准确率到97.5%以上;再得2分,否则再得0分; 源代码: import tensorflow.compat.v1 as
2021-10-12 21:35:26 161KB IS mnist python神经网络
1
在本笔记中,我们将以多层感知机(multilayer perceptron,MLP)为例,介绍多层神经网络的相关概念,并将其运用到最基础的MNIST数据集分类任务中,同时展示相关代码。本笔记主要从下面四个方面展开: 文章目录1 多层感知机(MLP)理论知识1.1 隐藏层1.2 激活函数1.3 多层感知机1.4 交叉熵(cross entropy)损失函数2. MNIST数据集简介3. 代码详解及结果展示4. 心得体会 1 多层感知机(MLP)理论知识 1.1 隐藏层 多层感知机在单层神经网络的基础上引入了一到多个隐藏层(hidden layer)。隐藏层位于输入层和输出层之间。下图展示了一
2021-10-09 16:15:45 257KB c IS mnist
1
主要为大家详细介绍了Tensorflow训练MNIST手写数字识别模型,文中示例代码介绍的非常详细,具有一定的参考价值,感兴趣的小伙伴们可以参考一下
1
利用卷积神经网络方法编写的简单的CNN-MNIST手写识别程序
2021-09-28 16:08:03 12.42MB mnistconv MNIST 智能信号处理 CNN识别
https://blog.csdn.net/askmeaskyou/article/details/108674860 文章全套代码。 mnist手写数字识别tensorflow2全连接层实现和卷积层实现(包含代码,模型,调用接口)
1
手写数字识别的Tensorflow完整代码,### 1. MNIST机器学习入门 **1.1.1 简介** 下载MNIST数据集,并打印一些基本信息: ``` python download.py ``` **1.1.2 实验:将MNIST数据集保存为图片** ``` python save_pic.py ``` **1.1.3 图像标签的独热表示** 打印MNIST数据集中图片的标签: ``` python label.py ``` **1.2.1 Softmax 回归** ``` python softmax_regression.py ``` **1.2.2 两层卷积网络分类** ``` python convolutional.py ``` #### 可能出现的错误 下载数据集时可能出现网络问题,可以用下面两种方法中的一种解决:1. 使用合适的代理 2.在MNIST的官方网站上下载文件train-images-idx3-ubyte.gz、train-labels-idx1-ubyte.gz、t10k-images-idx3-ubyte.gz、t10k-labels-idx1-ubyte.gz,并将它们存储在MNIST_data/文件夹中。 #### 拓展阅读 - 本章介绍的MNIST 数据集经常被用来检验机器学习模型的性能,在它的官网(地址:http://yann.lecun.com/exdb/mnist/ )中,可以找到多达68 种模型在该数据集上的准确率数据,包括相应的论文出处。这些模型包括线性分类器、K 近邻方法、普通的神经网络、卷积神经网络等。 - 本章的两个MNIST 程序实际上来自于TensorFlow 官方的两个新手教程,地址为https://www.tensorflow.org/get_started/mnist/beginners 和 https://www.tensorflow.org/get_started/mnist/pros 。读者可以将本书的内容和官方的教程对照起来进行阅读。这两个新手教程的中文版地址为http://www.tensorfly.cn/tfdoc/tutorials/mnist_beginners.html 和http://www.tensorfly.cn/tfdoc/tutorials/mnist_pros.html。 - 本章简要介绍了TensorFlow 的tf.Tensor 类。tf.Tensor 类是TensorFlow的核心类,常用的占位符(tf.placeholder)、变量(tf.Variable)都可以看作特殊的Tensor。读者可以参阅https://www.tensorflow.org/programmers_guide/tensors 来更深入地学习它的原理。 - 常用tf.Variable 类来存储模型的参数, 读者可以参阅[https://www.tensorflow.org/programmers_guide/variables](https://www.tensorflow.org/programmers_guide/variables) 详细了解它的运行机制, 文档的中文版地址为http://www.tensorfly.cn/tfdoc/how_tos/ variables.html。 - 只有通过会话(Session)才能计算出tf.Tensor 的值。强烈建议读者 在学习完tf.Tensor 和tf.Variable 后,阅读https://www.tensorflow.org/programmers_guide/graphs 中的内容,该文档描述了TensorFlow 中 计算图和会话的基本运行原理,对理解TensorFlow 的底层原理有很 大帮助。
2021-09-22 20:58:09 35KB 人工智能
1
使用PyTorch 训练的基于MNIST 数据集的手写数字识别网络
2021-08-29 18:18:19 6KB PyTorch MNIST 手写数字识别
1
提供手写数字识别代码及训练样本,准确率95%+.平台:VS+OPENCV2.4.9.
2021-08-03 21:11:43 46.77MB OPENCV SVM MNIST
1
Pytorch实现MNIST手写数字识别(全连接神经网络及卷积神经网络)-附件资源
2021-08-02 11:14:34 106B
1