ML交易-第二版 旨在说明ML如何以实用而全面的方式为算法交易策略增加价值。 它涵盖了从线性回归到深度强化学习的各种机器学习技术,并演示了如何建立,回测和评估由模型预测驱动的交易策略。 本书分为四个部分,共23章,另加附录,涵盖800余页: 数据采购,财务功能工程和资产组合管理的重要方面, 基于监督和无监督的机器学习算法的多空策略的设计和评估, 如何从SEC文件,收益电话记录或财务新闻等财务文本数据中提取可交易信号, 使用带有市场和替代数据的CNN和RNN等深度学习模型,如何使用生成的对抗网络生成综合数据,以及使用深度强化学习来训练交易代理 此回购包含150多个笔记本,这些笔记本将书中讨论的概念,算法和用例付诸实践。 他们提供了许多例子,说明 如何处理市场,基本和替代文本和图像数据并从中提取信号, 如何训练和调整可预测不同资产类别和投资范围的回报的模型,包括如何复制最近发表的
2021-06-30 16:48:05 124.4MB JupyterNotebook
1
密码分析方面的书籍,讲了一些比较基础的密码分析理论和方法。
2021-06-04 08:44:17 2.77MB crypto
1
LaTex算法库文件——algorithm.sty,可以下载直接使用。
2021-05-22 17:37:55 9KB latex
1
by Stefan Jansen Packt Publishing 2018-12-31 684 pages Explore effective trading strategies in real-world markets using NumPy, spaCy, pandas, scikit-learn, and Keras Key Features Implement machine learning algorithms to build, train, and validate algorithmic models Create your own algorithmic design process to apply probabilistic machine learning approaches to trading decisions Develop neural networks for algorithmic trading to perform time series forecasting and smart analytics Book Description The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This book enables you to use a broad range of supervised and unsupervised algorithms to extract signals from a wide variety of data sources and create powerful investment strategies. This book shows how to access market, fundamental, and alternative data via API or web scraping and offers a framework to evaluate alternative data. You'll practice the ML work?ow from model design, loss metric definition, and parameter tuning to performance evaluation in a time series context. You will understand ML algorithms such as Bayesian and ensemble methods and manifold learning, and will know how to train and tune these models using pandas, statsmodels, sklearn, PyMC3, xgboost, lightgbm, and catboost. This book also teaches you how to extract features from text data using spaCy, classify news and assign sentiment scores, and to use gensim to model topics and learn word embeddings from financial reports. You will also build and evaluate neural networks, including RNNs and CNNs, using Keras and PyTorch to exploit unstructured data for sophisticated strategies. Finally, you will apply transfer learning to satellite images to predict economic activity and use reinforcement learning to build agents that learn to trade in the OpenAI Gym. What you will learn Implement machine learning techniques to solve investment and trading problems Leverage market, fundamental
2021-05-21 19:23:18 58.67MB AI Algorithmic Trading
1
作者:Anany Levitin, Maria Levitin 出版日期:October 14, 2011 出版社:Oxford University Press 页数:280 pages ISBN:978-0199740444 文件格式:PDF 书籍简介 While many think of algorithms as specific to computer science, at its core algorithmic thinking is defined by the use of analytical logic to solve problems. This logic extends far beyond the realm of computer science and into the wide and entertaining world of puzzles. In Algorithmic Puzzles, Anany and Maria Levitin use many classic brainteasers as well as newer examples from job interviews with major corporations to show readers how to apply analytical thinking to solve puzzles requiring well-defined procedures. The book’s unique collection of puzzles is supplemented with carefully developed tutorials on algorithm design strategies and analysis techniques intended to walk the reader step-by-step through the various approaches to algorithmic problem solving. Mastery of these strategies–exhaustive search, backtracking, and divide-and-conquer, among others–will aid the reader in solving not only the puzzles contained in this book, but also others encountered in interviews, puzzle collections, and throughout everyday life. Each of the 150 puzzles contains hints and solutions, along with commentary on the puzzle’s origins and solution methods. The only book of its kind, Algorithmic Puzzles houses puzzles for all skill levels. Readers with only middle school mathematics will develop their algorithmic problem-solving skills through puzzles at the elementary level, while seasoned puzzle solvers will enjoy the challenge of thinking through more difficult puzzles.
2021-05-16 21:45:06 1.57MB Algorithm 算法
1
Distributed Systems An Algorithmic Approach 很好的一本书,看了都知道,就是难度有点高,愿者自取吧(费了好大劲才从网上找到)
2021-05-12 23:45:36 2.63MB 分布式 Distributed Systems Algorithmic
1
全面介绍了多智能体系统,这本教科书是从计算机科学的角度从运筹学,博弈论,经济学,逻辑,甚至哲学和语言学写的,而思想汇集。
2021-04-11 11:30:33 86B 计算机科学
1
算法和高频交易 主要是最佳执行策略 重现ÁlvaroCartea,Sebastian Jaimungal和JoséPenalva所著的“算法和高频交易”一书的结果。 此回购协议是使用Wolfram语言实现的。 有关上述书籍的更多信息,请参阅 有关Wolfram语言的更多信息,请参考
2021-03-30 02:57:00 9.2MB Mathematica
1
使用Python进行算法交易 克里斯·康兰(Chris Conlan)的《 Python算法交易》(2020)的源代码。 可以购买平装本。 有用的资源 无论有没有附带的书,这些独立的资源对于研究人员都是有用的。该存储库中的其余材料取决于书中给出的解释和上下文。 用于评估交易策略的绩效指标: 纯熊猫的常见技术指标: 将常见技术指标转换为三元信号: 用于数值优化的通用网格搜索包装器: 用于投资组合模拟的面向对象的构建基块: 用于多核重复K折交叉验证的通用包装器: 免费使用的模拟EOD库存数据和替代数据流:
2021-03-27 19:43:02 4.8MB Python
1
Distributed.Systems.An.Algorithmic.Approach.2nd.Edition 清晰中文版;
2021-03-14 11:21:58 3.46MB Distri
1