凯格勒·罗斯曼 Kaggle的代码。 该脚本也可以从。 csv2sql.py - load train and test data into a SQLite database, using Pandas predict_sales_with_pandas.py - just that 不要问您可以为德国人做什么? 问德国人可以为您做什么!
2025-06-10 15:02:52 3KB Python
1
内容概要:本文主要探讨了利用机器学习技术对学生辍学和学业成功进行预测的方法。通过分析一个详细的教育数据集,进行了数据清理与预处理,并利用了相关性分析来筛选数据。接着分别采用了随机森林、K近邻、逻辑回归以及决策树四种经典机器学习模型来进行实验,比较它们在该任务中的表现。最终得出逻辑回归模型与随机森林模型在这项工作中具有更好的性能。 适用人群:本报告适合关注教育领域的数据科学家、研究人员和教育工作者;对希望通过改进教学质量预防学生辍学者特别有价值。 使用场景及目标:该预测模型可以在学校管理过程中发挥作用,帮助识别潜在辍学风险高的学生,从而允许早期干预,优化教学资源配置并提升整体学业成功率。 其他说明:文中还讨论了一些重要的机器学习概念如准确性、错误率等,并引用了一系列与主题紧密关联的专业书籍和技术文献,为未来的研究提供了坚实的基础。
2025-06-09 13:10:39 2.25MB 机器学习 数据挖掘
1
内容概要:文章详细探讨了BP神经网络的基本原理和具体实现方法,并展示了其在江苏省军工产业持续创新发展中的实际应用。文中不仅深入介绍了BP神经网络的工作机制,如输入层、隐藏层及输出层的功能以及反向传播算法的细节推导过程,而且还解释了利用BP神经网络对军工产业持续创新能力评估的具体步骤。通过构建合理的样本集进行训练,最后通过模拟实验证明BP神经网络在预测该领域的指标方面的高效性和精确度。 适合人群:具有一定编程技能并对人工智能感兴趣的高等院校研究人员、工程技术人员或从事军事工业相关的从业者。 使用场景及目标:本文旨在为从事或关注军事工业领域的人士提供一个新的分析工具,以帮助他们更好地理解和预测产业创新的影响因素,并提出有效的改进建议。具体应用场景包括但不限于企业决策支持、政策规划、投资战略等。 其他说明:文章附带了一个详细的案例——关于江苏省军工产业发展情况的研究成果,通过该研究证明BP神经网络的有效性;另外,还提供了几个公式来阐述网络训练中权重更新的原则,有助于读者进一步理解模型背后的技术逻辑。
1
时空联合规划是在自动驾驶领域中一种综合考虑空间和时间因素的路径规划方法。它旨在解决在约束动态环境中,如何更有效地预测与规划车辆运动轨迹的问题。这种方法尤其适用于复杂多变的道路条件,例如在狭窄道路交汇或超车时,能够提供合理的行驶轨迹。 传统的路径规划方法在考虑车辆运动时,往往将空间和时间因素分开处理,这样会造成在规划过程中丢失一些关键信息,从而影响最终轨迹的优劣。时空联合规划通过将空间和时间联合起来,在三维空间内直接计算最佳轨迹,因此可以提供更加准确和高效的解决方案。 时空联合规划的实现通常包括以下几个步骤:在x-y平面求解最佳行车路线;接着,根据路径计算行车速度的曲面;计算曲面上的最佳速度,获得最终的轨迹。这种方法可以充分考虑动态障碍物信息,使得路径规划更加合理。 在方法论上,时空联合规划可以基于搜索的规划方法、基于迭代计算的规划方法和基于时空走廊的规划方法等实现。例如,基于Hybrid A*的时空联合规划是一种有效的路径规划技术。Hybrid A*算法结合了启发式搜索和动态规划的特点,可以有效处理复杂场景下的轨迹规划问题。它利用离散化前轮转角集合和加速度集合来更新车辆状态,同时定义时空节点的启发式函数和成本函数来优化搜索过程,从而加快路径规划的搜索速度,降低算力要求。 构建三维时空联合规划地图是时空联合规划中的关键步骤,它基于二维栅格地图沿时间轴扩展生成三维时空地图。三维时空地图不仅包含车辆的位置和运动学信息,还能展示车辆的状态更新过程,包括横向和纵向速度以及偏航角。这样的地图可以为车辆提供更加丰富的环境信息,使得路径规划更加精确。 在应用案例展示中,时空联合规划能够有效解决窄道会车问题。窄道会车对于自动驾驶车辆来说是一个挑战,因为需要在有限的空间内合理地规划车辆的行进路线和速度。时空联合规划可以提供一种在三维空间内直接计算最佳轨迹的方法,从而有效避免会车时的潜在碰撞风险,保证行车安全。 时空联合规划在自动驾驶中的应用具有诸多优势。它能够更合理地考虑动态障碍物的影响,避免传统算法容易陷入的轨迹次优问题。同时,这种方法符合人类驾驶习惯,通过直接学习人类司机的行为模式,可以使得自动驾驶系统更加容易被用户接受和信任。在未来,随着技术的不断进步和算法的进一步优化,时空联合规划将在自动驾驶领域发挥越来越重要的作用。 时空联合规划作为自动驾驶预测与决策规划的重要组成部分,通过将空间和时间因素结合起来,为自动驾驶车辆在复杂环境中的安全、高效运行提供了新的解决思路和方法。随着相关技术的不断成熟和应用范围的扩展,时空联合规划将有助于推动自动驾驶技术的发展,并最终实现安全可靠的自动驾驶系统。
2025-06-06 16:38:28 3.91MB 自动驾驶 预测与决策
1
内容概要:本文深入探讨了基于Matlab Simulink 2021a平台构建的MPC(模型预测控制)路径跟踪仿真系统。该系统采用模块化建模方式,涵盖MPC控制模块、参考线模块、数据更新模块以及动态车辆动力学模块。通过详细的代码解析,展示了各个模块的功能及其相互协作的方式。特别是对车辆动力学模型、参考线生成方法、MPC控制器配置及参数调整进行了重点介绍。此外,还讨论了在实际应用中可能遇到的问题及解决方案,如插值方法选择不当导致的曲率突变、控制权重设置不合理引发的车辆行为异常等。 适合人群:对自动驾驶技术感兴趣的科研人员、高校师生及从事汽车控制系统开发的技术人员。 使用场景及目标:本研究旨在为自动驾驶领域的路径规划与跟踪提供理论支持和技术参考,帮助研究人员更好地理解和掌握MPC模型预测控制的基本原理及其在实际驾驶场景中的应用。 其他说明:文中提供的完整源码文件、建模说明文档及相关资料有助于读者进行进一步的学习和实验探索。
2025-06-05 11:45:14 500KB
1
内容概要:本文详细介绍了街景主观感知模型的训练与大规模预测方法。首先,文章阐述了街景主观感知模型的基本概念及其重要性,强调了‘beautiful’和‘safer’等主观感知维度。接着,文中提到使用自定义数据集(420张图片)进行模型训练的基础,确保数据集的质量和丰富性。然后,文章对多个深度学习模型(如ResNet50、ResNet101、EfficientNet等)进行了对比训练,记录并分析了各模型的表现。最终,通过大量训练和优化,模型在测试集上取得了0.89的高精度。此外,文章还讨论了如何利用训练好的模型进行大规模预测,为城市规划和改造提供有价值的数据支持。 适合人群:从事计算机视觉领域的研究人员和技术人员,尤其是对街景感知模型感兴趣的从业者。 使用场景及目标:适用于希望深入了解街景主观感知模型训练和预测的研究人员,旨在帮助他们掌握多模型对比的方法,提升模型精度,应用于实际的城市规划和改造项目。 其他说明:文章不仅提供了理论指导,还分享了具体的实践经验,使读者能够在实践中更好地理解和应用相关技术。
2025-06-04 22:36:40 2.26MB
1
在当今商业和科技领域,预测员工离职已经成为了管理者和数据科学家关注的焦点。通过机器学习和数据分析技术,企业可以更准确地预测哪些员工可能会离开,从而采取措施保留人才,减少人力资源成本和知识流失。本文介绍了一个使用Python编程语言构建的决策树模型,该模型旨在预测员工离职的可能性。 决策树是一种常用的监督学习算法,广泛应用于分类问题。它通过学习数据特征间的内在关系,建立起一个树状模型,用于预测目标变量。在本案例中,目标变量是员工是否离职。为了建立模型,我们需要一个包含员工历史数据的训练集。这些数据通常包括员工的个人信息、工作表现、工作环境和满意度等因素。 在提供的文件列表中,“员工离职数据.xlsx”是一个包含员工历史数据的Excel文件。这个文件可能包含多个字段,如员工年龄、性别、工作年限、职位级别、过去的工作评价、薪资水平、公司满意度调查结果等。数据科学家将从这个文件中提取相关数据,进行数据预处理,比如处理缺失值、异常值和数据编码等。 接下来,“基于Python的决策树用于员工离职预测.py”是一个Python脚本文件,该脚本使用了如pandas、numpy和scikit-learn等流行的Python数据分析和机器学习库。在脚本中,首先会导入必要的库和模块,然后加载“员工离职数据.xlsx”文件中的数据,并对数据进行清洗和预处理。数据预处理完成后,将数据集分为训练集和测试集,使用决策树算法进行模型训练,并使用测试集进行模型验证。 训练和验证过程结束后,我们会对模型进行评估,常用评估指标包括准确率、召回率、F1分数和混淆矩阵等。通过这些指标,我们可以衡量模型在预测员工离职方面的表现。如果模型表现良好,我们可以将其部署到实际的人力资源管理系统中,帮助企业预测并分析员工离职的风险。 此外,决策树模型的一个突出特点是其可解释性。模型结果可以以树状图的形式展现,使得非技术背景的管理人员也能够理解模型的决策逻辑和员工离职的关键因素。通过分析模型得出的特征重要性,企业能够识别哪些因素是驱动员工离职的主要原因,从而制定有效的管理和激励策略。 本项目通过Python编程语言和决策树算法构建了一个员工离职预测模型,旨在帮助企业有效地管理人力资源,减少员工流失所带来的损失。通过对历史数据的分析和模型训练,企业可以更加精准地识别可能离职的员工,并采取适当的措施以保留关键人才。
2025-06-03 18:31:18 498KB python
1
"Comsol碳化硅电热耦合计算模型:精准预测碳化硅芯片电场与温度场分布",comsol 碳化硅电热耦合计算模型,可以得到碳化硅芯片的电场和温度场分布, ,comsol; 碳化硅电热耦合计算模型; 电场分布; 温度场分布; 芯片。,"Comsol碳化硅电热耦合模型:解析碳化硅芯片电场与温度场分布" 碳化硅作为一种具有高熔点、高热导率、低介电常数和高热稳定性的半导体材料,在高温、高功率以及高频电子器件领域内具有广泛的应用前景。随着科技的迅猛发展,对于碳化硅器件的电热特性研究变得愈发重要。碳化硅电热耦合计算模型通过多物理场仿真软件,如Comsol Multiphysics,可以实现对碳化硅芯片中电场和温度场分布的精准预测。 在碳化硅电热耦合计算模型的构建过程中,需要考虑碳化硅材料的物理属性,例如电导率、热导率、介电常数等参数随温度变化的特性。模型将电场和温度场的计算相结合,不仅能够预测出芯片在不同工作条件下的温度分布,还能分析电场在芯片内部的分布情况,从而评估器件的热应力、热疲劳和潜在的热失控风险。 电热耦合模型的建立对于碳化硅芯片的设计和优化至关重要。通过仿真分析,工程师可以评估不同设计参数对器件性能的影响,例如,散热结构的改进、芯片尺寸的优化以及材料选择等,进而指导实验研究和器件开发。此外,电热耦合模型还可以用于故障分析,帮助研究者理解和解决碳化硅器件在实际运行中可能遇到的过热问题。 对于电子设备而言,碳化硅电热耦合计算模型的应用可以提高器件的工作效率和可靠性。例如,在功率模块设计中,通过优化电热耦合模型,可以有效控制热管理,保证器件在高效能和高可靠性之间达到最佳平衡。同时,该模型还有助于实现更小型化和集成化的电子设备设计,为未来电子设备的发展趋势提供技术支持。 此外,碳化硅电热耦合计算模型在学术研究中也具有重要的价值。通过对比仿真结果与实验数据,研究者可以验证和完善模型的准确性,从而深入理解碳化硅材料的物理机制和电热特性。这不仅有助于推动半导体物理学科的发展,还能够为新型碳化硅器件的研发提供理论基础。 碳化硅电热耦合计算模型是理解和掌握碳化硅芯片电场与温度场分布的关键工具。通过多物理场仿真技术,该模型能够为碳化硅材料及其器件的设计、优化、故障分析以及学术研究提供强有力的支撑,推动碳化硅技术在电力电子、半导体工业等领域的应用与发展。
2025-06-03 16:02:10 82KB safari
1
实战Kaggle比赛-预测房价(pytorch版)
2025-06-03 08:22:59 200KB
1
机器学习模型案例与SHAP解释性分析:涵盖类别与数值预测,CatBoost、XGBoost等六大模型深度解析及SHAP分析比较,shap分析代码案例,多个机器学习模型+shap解释性分析的案例,做好的多个模型和完整的shap分析拿去直接运行,含模型之间的比较评估。 类别预测和数值预测的案例代码都有,类别预测用到的6个模型是(catboost、xgboost、knn、logistic、bayes,svc),数值预测用到的6个模型是(线性回归、随机森林、xgboost、lightgbm、支持向量机、knn),机器学习模型; SHAP解释性分析; 多个模型比较评估; 类别预测模型(catboost、xgboost、knn、logistic、bayes、svc); 数值预测模型(线性回归、随机森林、xgboost、lightgbm、支持向量机、knn); 完整shap分析代码案例; 模型之间比较评估。,"多模型SHAP解释性分析案例集:类别预测与数值预测的全面比较评估"
2025-06-02 20:17:41 47KB
1