对于许多研究人员和审查员来说,确定股票价格的专业性一直是一项麻烦的任务。 事实上,金融专家对股票价值预测的检查领域非常感兴趣。 对于体面而有用的投机,众多投机者对股市未来走势了如指掌。 强大而强大的股票市场预测框架可帮助交易商、投机者和专家提供重要数据,例如股票市场的未来走向。 这项工作提出了一种循环神经网络 (RNN) 和长短期记忆 (LSTM) 方法来处理预期的股市文件。
2023-04-04 14:57:56 154KB Artificial Neural Network
1
Matlab实现GA-LSTM遗传算法优化长短期记忆网络的数据多输入单输出回归预测(完整源码和数据) 命令窗口输出MAE、MAPE、MSE、R2、MSE等指标。 优化学习率、隐藏层节点数、正则化系数。
2023-04-03 22:23:22 417KB matlab 网络 lstm 回归
空气环境问题越发成为人们关注的焦点.除了工厂排放的各种废气,私家车的普及都导致了当前令人担忧的空气环境状况.国家相关部门也开始加大对空气环境的治理,提出了环境质量网格化监测的相关政策.在此背景下,市场涌现出很多微型监测仪器,但由于自身内部的传感器精准度不够,存在数据偏差的问题.为了解决这一问题,本文通过利用神经网络技术中的长短期记忆网络(Long Short-Term Memory,LSTM)模型结合半监督学习方法,达到提高监测数据的精准度的目的.通过与其它模型进行对比分析,该方法达到了一定的效果.
1
针对网络入侵检测准确率偏低而误报率偏高的问题,提出一种融合卷积神经网络(CNN)与双向长短期记忆( BILSTM)网络的网络入侵检测方法。对 Kddcup99数据集进行预处理,并分别使用CNN模型、 BILSTM模型提取局部特征和长距离依赖特征,通过注意力机制计算特征的重要性,利用 softmax分类器获得最终的分类结果实验结果表明,与基于CNN和基于LSTM的方法相比,该方法的网络入侵检测效果较好,其准确率可提高至95.0%,误检率可降低至5.1%。
2023-03-06 19:31:28 2.91MB 神经网络
1
MATLAB实现LSTM长短期记忆神经网络多特征分类预测(完整源码和数据) 数据为多特征分类数据,输入12个特征,分四类,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。 运行环境MATLAB2018b及以上。
MATLAB实现BiLSTM双向长短期记忆神经网络多特征分类预测(完整源码和数据) 数据为多特征分类数据,输入12个特征,分四类,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。 运行环境MATLAB2018b及以上。
基于LSTM长短期记忆网络的数据分类预测(Matlab完整程序和数据) 基于LSTM长短期记忆网络的数据分类预测(Matlab完整程序和数据) 基于LSTM长短期记忆网络的数据分类预测(Matlab完整程序和数据) 运行环境Matlab2018b及以上。
隐马尔可夫模型 (HMM) 是一种信号预测模型,已被用于预测经济状况和股票价格。 该项目旨在实现将机器学习算法应用于股票市场的目标。 长短期记忆模型(LSTM)保证了在新的时间状态下,随着隐藏层不断叠加输入序列,之前的信息可以继续向后传播而不会消失。我们的主要目的是通过预测一只股票的涨跌 使用 HMM-LSTM。 Experiment with 4 different models: GMM-HMM XGB-HMM GMM-HMM-LSTM XGB-HMM-LSTM Compared with the results: train_set
2022-12-23 15:27:44 2.56MB HMM-LSTM GMM-HMM XGB-HMM GMM-HMM-LSTM
MATLAB实现GWO-BiLSTM灰狼算法优化双向长短期记忆神经网络多输入单输出回归预测(完整源码和数据) 灰狼算法优化参数为初始学习率,隐藏层节点个数,正则化参数。 数据为多输入回归数据,输入6个特征,输出1个变量。 运行环境MATLAB2018b及以上,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。
MATLAB实现GWO-LSTM灰狼算法优化长短期记忆神经网络多输入单输出回归预测(完整源码和数据) 灰狼算法优化参数为初始学习率,隐藏层节点个数,正则化参数。 数据为多输入回归数据,输入6个特征,输出1个变量。 运行环境MATLAB2018b及以上,程序乱码是由于版本不一致导致,可以用记事本打开复制到你的文件。